|
1. Guo, M., et al., Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell, 2014. 158(4): p. 822-832. 2. Joo, C., et al., Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering. Optics express, 2010. 18(3): p. 2858-2871. 3. Lee, J., et al., Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography. Journal of Cerebral Blood Flow & Metabolism, 2013. 33(6): p. 819-825. 4. Zhao, Y., et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics letters, 2000. 25(2): p. 114-116. 5. Lee, P.H., et al. Blood vessel extraction from OCT data by short-time RPCA. in 2016 IEEE International Conference on Image Processing (ICIP). 2016. 6. Liu, G., et al., Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging. Optics express, 2011. 19(4): p. 3657-3666. 7. Liu, G., et al., Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Optics express, 2011. 19(12): p. 11429-11440. 8. Tamborski, S., et al., Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical optics express, 2016. 7(11): p. 4400-4414. 9. Mazlin, V., et al., In vivo high resolution human corneal imaging using full-field optical coherence tomography. Biomed Opt Express, 2018. 9(2): p. 557-568. 10. McNamara, P.M., H.M. Subhash, and M.J. Leahy, In vivo full-field en face correlation mapping optical coherence tomography. Journal of biomedical optics, 2013. 18(12): p. 126008. 11. Ogien, J. and A. Dubois. Speckle variance full-field optical coherence microscopy for high-resolution microvasculature mapping. in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017. International Society for Optics and Photonics. 12. Apelian, C., et al., Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis. Biomed Opt Express, 2016. 7(4): p. 1511-24. 13. Choi, W.J., et al., Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt Express, 2010. 18(22): p. 23285-95. 14. Ananthanarayanan, V., et al., Dynein motion switches from diffusive to directed upon cortical anchoring. Cell, 2013. 153(7): p. 1526-1536. 15. Hammar, P., et al., The lac repressor displays facilitated diffusion in living cells. Science, 2012. 336(6088): p. 1595-1598. 16. Ries, J. and P. Schwille, Fluorescence correlation spectroscopy. Bioessays, 2012. 34(5): p. 361-368. 17. Popescu, G., et al., Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases, 2008. 41(1): p. 10-16. 18. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-1181. 19. Vakoc, B.J., et al., Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nature Reviews Cancer, 2012. 12(5): p. 363. 20. Shu, X., L.J. Beckmann, and H.F. Zhang, Visible-light optical coherence tomography: a review. Journal of biomedical optics, 2017. 22(12): p. 121707. 21. Anna, T., et al., A Feasibility Study of Broadband White Light Emitting Diode (WLED) Based Full-Field Optical Coherence Microscopy (FF-OCM) Using Derivative-Based Algorithm. IEEE Photonics Journal, 2017. 9(2): p. 1-13. 22. Chen, Z., et al., Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett, 1997. 22(1): p. 64-6. 23. Fujimoto, J.G., Optical coherence tomography. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2001. 2(8): p. 1099-1111. 24. Chang, S., X. Cai, and C. Flueraru, An efficient algorithm used for full-field optical coherence tomography. Optics and Lasers in Engineering, 2007. 45(12): p. 1170-1176. 25. Beer, F., et al., Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT. Biomed Opt Express, 2017. 8(6): p. 2906-2923. 26. Chen, Z., et al., Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics letters, 1997. 22(14): p. 1119-1121. 27. Izatt, J.A., et al., In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Optics letters, 1997. 22(18): p. 1439-1441. 28. Liu, G., et al., A comparison of Doppler optical coherence tomography methods. Biomedical optics express, 2012. 3(10): p. 2669-2680. 29. Liu, G., et al., High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Optics express, 2012. 20(7): p. 7694-7705. 30. Mahmud, M.S., et al., Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. Journal of biomedical optics, 2013. 18(5): p. 050901. 31. Oldenburg, A.L., et al., Inverse-power-law behavior of cellular motility reveals stromal–epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy. Optica, 2015. 2(10): p. 877-885. 32. Sacchet, D., et al., Motion artifact suppression in full-field optical coherence tomography. Applied optics, 2010. 49(9): p. 1480-1488.
|