跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭家宜
研究生(外文):Chia-Yi Cheng
論文名稱:高解析度全域式光學同調斷層顯微術應用於動態造影可行性評估
論文名稱(外文):The feasibility of dynamic imaging using high resolution full-field optical coherence microscopy(FF-OCM)
指導教授:郭文娟郭文娟引用關係
指導教授(外文):Wen-Chuan Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:全域式光學同調斷層掃描動態影像
外文關鍵詞:Optical Coherence Microscopydynamic imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高解析度全域式光學同調斷層顯微術 (Full-Field Optical Coherence Microscopy, FF-OCM),是一種利用低同調斷層掃描干涉取得三維樣品之技術,相較於其他種類的OCT,最大的不同在於全域式OCT一次掃描即可擷取一張 X-Y平面影像,不需做掃描即可獲得影像,而此種做法用於血管網路成像與細胞運動捕捉具有快速取得大視野的優勢。在本論文中FF-OCM採用微分演算法,不需要使用精確的相位掃描,四張影像即可解調,在速度提升上有很大的幫助。本系統使用supercontinuum laser source (450-1000nm),中心波長為 650 nm,半高寬為 240 nm,系統測試軸向解析度與橫向解析度分別為0.9 m 和 1.33 m (NA=0.3),我們搭配三種捕捉動態樣本之演算法用來評估高解析度成像速率之FF-OCM用於之流體成像(速度每秒達50張)。初步測試結果顯示FF-OCM系統可偵測微流道內血液流動達25mm/min之速度與細胞運動之監測。
High-resolution Optical Coherence Microscopy (FF-OCM), based on low-coherence tomography interferometry, is a technique for obtaining sections from three-dimensional samples. Compared with other types of optical coherence tomography (OCT), the most significant difference is that the FF-OCM no need to scan point by point laterally. This X-Y imaging capability is especially important to vascular network imaging and cell dynamics observation with the advantage of rapid access to a large field of view. In this thesis, FF-OCM using derivative demodulation method can get the enface map (X-Y image) using four phase-shifting step. Our system used a supercontinuum laser source with a wavelength range from 450nm to 1000nm. The center wavelength of the laser is 800nm, bandwidth is 300nm, which provides 0.9m axial resolution in air, and 1.33 m lateral resolution by using an objective (NA=0.3). Moreover, we assessed the feasibility of dynamic imaging by the implementation of three calculation methods to this high-resolution FF-OCM for flow mapping with an imaging rate of 50 Hz. Here, we demonstrate the mapping of blood flowing in a microchannel at speeds up to ~ 25 mm/min, and detect the cell motility by using a high-speed, high-resolution FF-OCM setup.
致謝 i
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 1
表目錄 3
第 1 章 緒論 4
1-1 研究背景 4
1-2 文獻回顧 4
1-2-1 OCT 系統應用於流體影像 4
1-2-2 FF-OCM 應用發展 7
1-3 研究動機與目的 14
第 2 章 背景理論 16
2-1 光學同調斷層掃描術簡介 16
2-2 光學同調斷層掃描術 18
2-3 時域光學同調斷層掃描 (Time Domain OCT, TDOCT) 19
2-4 全域式光學同調斷層掃描術 20
2-5 低同調斷層掃描術理論 21
2-6 干涉可見度 25
2-7 光學同調斷層解析度 25
2-7-1 橫向解析度 26
2-7-2 軸向解析度 28
2-8 視野範圍 29
2-9 相機雜訊特性 30
2-10 靈敏度 31
2-11 動態範圍(Dynamic range) 32
2-12 全域式 OCT 之重建影像演算法 32
2-12-1 微分演算法 33
2-13 血管影像對比增強演算法(IBDV)介紹 34
2-14 雷射散斑波動和運動幅度分析 36
第 3 章 系統架構與參數 38
3-1 Linnik-base FFOCM架構與介紹 38
3-2 干涉可見度 40
3-3 橫向解析度 41
3-4 軸向解析度 43
3-5 視場範圍 45
3-6 相機規格和雜訊特性 45
3-7 動態範圍、靈敏度 46
3-8 微分演算法 47
第 4 章 影像重建與結果討論 51
4-1 實驗樣品 51
4-2 微流道仿體流動影像擷取 52
4-3 微流道仿體影像三種演算法最佳化參數 53
4-4 IBDV 影像最佳化參數 54
4-4-1 IBDV 影像平均張數 54
4-4-2 IBDV 影像延遲時間測試 56
4-4-3 IBDV影像延遲時間測試於血管模擬 58
4-4-4 IBDV影像流速測試於血管模擬 61
4-5 STD影像最佳化參數 63
4-5-1 STD 影像平均張數 63
4-5-2 STD 影像延遲時間測試 65
4-5-3 STD 影像延遲時間測試於血管模擬 67
4-5-4 STD 影像流速測試於血管模擬 68
4-6 SFA 影像最佳化參數 69
4-6-1 SFA 影像平均張數測試 69
4-6-2 SFA影像延遲時間測試 71
4-6-3 SFA 影像延遲時間測試於血管模擬 72
4-6-4 SFA影像流速測試於血管模擬 73
4-7 微流道仿體之 OCT 影像與 IBDV、STD與SFA影像動態評估 74
4-8 IBDV、STD與SFA 應用於細胞動態評估 77
4-9 捕捉細胞動態影像 79
第 5 章 結語與未來展望 80
參考文獻 81
1. Guo, M., et al., Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell, 2014. 158(4): p. 822-832.
2. Joo, C., et al., Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering. Optics express, 2010. 18(3): p. 2858-2871.
3. Lee, J., et al., Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography. Journal of Cerebral Blood Flow & Metabolism, 2013. 33(6): p. 819-825.
4. Zhao, Y., et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics letters, 2000. 25(2): p. 114-116.
5. Lee, P.H., et al. Blood vessel extraction from OCT data by short-time RPCA. in 2016 IEEE International Conference on Image Processing (ICIP). 2016.
6. Liu, G., et al., Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging. Optics express, 2011. 19(4): p. 3657-3666.
7. Liu, G., et al., Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Optics express, 2011. 19(12): p. 11429-11440.
8. Tamborski, S., et al., Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical optics express, 2016. 7(11): p. 4400-4414.
9. Mazlin, V., et al., In vivo high resolution human corneal imaging using full-field optical coherence tomography. Biomed Opt Express, 2018. 9(2): p. 557-568.
10. McNamara, P.M., H.M. Subhash, and M.J. Leahy, In vivo full-field en face correlation mapping optical coherence tomography. Journal of biomedical optics, 2013. 18(12): p. 126008.
11. Ogien, J. and A. Dubois. Speckle variance full-field optical coherence microscopy for high-resolution microvasculature mapping. in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017. International Society for Optics and Photonics.
12. Apelian, C., et al., Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis. Biomed Opt Express, 2016. 7(4): p. 1511-24.
13. Choi, W.J., et al., Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt Express, 2010. 18(22): p. 23285-95.
14. Ananthanarayanan, V., et al., Dynein motion switches from diffusive to directed upon cortical anchoring. Cell, 2013. 153(7): p. 1526-1536.
15. Hammar, P., et al., The lac repressor displays facilitated diffusion in living cells. Science, 2012. 336(6088): p. 1595-1598.
16. Ries, J. and P. Schwille, Fluorescence correlation spectroscopy. Bioessays, 2012. 34(5): p. 361-368.
17. Popescu, G., et al., Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases, 2008. 41(1): p. 10-16.
18. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-1181.
19. Vakoc, B.J., et al., Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nature Reviews Cancer, 2012. 12(5): p. 363.
20. Shu, X., L.J. Beckmann, and H.F. Zhang, Visible-light optical coherence tomography: a review. Journal of biomedical optics, 2017. 22(12): p. 121707.
21. Anna, T., et al., A Feasibility Study of Broadband White Light Emitting Diode (WLED) Based Full-Field Optical Coherence Microscopy (FF-OCM) Using Derivative-Based Algorithm. IEEE Photonics Journal, 2017. 9(2): p. 1-13.
22. Chen, Z., et al., Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett, 1997. 22(1): p. 64-6.
23. Fujimoto, J.G., Optical coherence tomography. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2001. 2(8): p. 1099-1111.
24. Chang, S., X. Cai, and C. Flueraru, An efficient algorithm used for full-field optical coherence tomography. Optics and Lasers in Engineering, 2007. 45(12): p. 1170-1176.
25. Beer, F., et al., Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT. Biomed Opt Express, 2017. 8(6): p. 2906-2923.
26. Chen, Z., et al., Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics letters, 1997. 22(14): p. 1119-1121.
27. Izatt, J.A., et al., In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Optics letters, 1997. 22(18): p. 1439-1441.
28. Liu, G., et al., A comparison of Doppler optical coherence tomography methods. Biomedical optics express, 2012. 3(10): p. 2669-2680.
29. Liu, G., et al., High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Optics express, 2012. 20(7): p. 7694-7705.
30. Mahmud, M.S., et al., Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. Journal of biomedical optics, 2013. 18(5): p. 050901.
31. Oldenburg, A.L., et al., Inverse-power-law behavior of cellular motility reveals stromal–epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy. Optica, 2015. 2(10): p. 877-885.
32. Sacchet, D., et al., Motion artifact suppression in full-field optical coherence tomography. Applied optics, 2010. 49(9): p. 1480-1488.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top