跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周皓偉
研究生(外文):Hao-Wei Chou
論文名稱:利用鍍鎳廢液製備儲能材料之研究
論文名稱(外文):The Study on Preparation of Energy Storage Materials from Nickel-Containing Wastewater
指導教授:蔡子萱蔡子萱引用關係
指導教授(外文):Tzu-Hsuan Tsai
口試委員:吳永富張本秀蔡子萱
口試日期:2017-02-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:115
中文關鍵詞:電化學電容器化學沉澱廢液儲能氫氧化鎳
外文關鍵詞:Electrochemical capacitorChemical precipitationWastewaterEnergy storageNickel hydroxide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
晶圓封裝常以化學鍍的方式製作金屬層,其中化學鍍鎳溶液經過重複使用會在鍍液中不斷累積亞磷酸根離子,致使鍍液發生老化、造成鍍速降低,甚至讓鍍層的品質產生變異,因此必須經常汰換。隨著台灣封裝產值增加,大量的鍍鎳廢液已成為封裝廠沉重的包袱。事實上,這些被淘汰鍍鎳液中仍保留大量的鎳離子未被使用,本研究採用化學沉澱法進行含鎳廢液資源化處理,實驗探討不同反應參數對去除鍍液中鎳離子的影響,並且分析所合成的沉澱物特性,進一步將合成的沉澱物製備為儲能材料。實驗結果顯示在適當參數控制下,鍍液中鎳離子的移除率可達99%以上;以XRD、SEM-EDS、FTIR、Raman spectra和TGA等儀器分析反應產物可知,沉澱物主要為非晶質氫氧化鎳且含有層間水分子與陰離子,使回收的氫氧化鎳粉具有良好的電化學性能;最後,將回收的氫氧化鎳粉製成電極進行電化學特性量測,並與市售氫氧化鎳進行比較發現,直接沉澱所得的氫氧化鎳粉具有較高的比電容量,並且經過100次循環掃描後,電容量保有比率亦較市售品高,顯示自鍍鎳廢液中可合成出具儲能潛力的材料。
Chemical plating is often adopted in a wafer packaging process for metallization. In a used electroless nickel plating bath, phosphite ions accumulate continually and make the bath aged and the deposited nickel quality decreased. Thus a great amount of plating wastewater is produced and becomes one of the most serious environmental problems today. Actually the conversion of nickel ions is not over 15 wt.% in the used electroless nickel plating wastewater. In this study, nickel-containing wastewater was treated by chemical precipitation under different reaction parameters. After chemical precipitation, the precipitate was analyzed using XRD, FTIR, Raman spectra, SEM-EDS and TGA. Furthermore, the as-synthesized precipitate was utilized as energy storage materials. Our experimental results showed that the removal fraction of nickel was more than 99% by use of chemical precipitation. The recovered precipitate from nickel-containing wastewater is mainly amorphous nickel hydroxide containing interlayer water molecules and anions. This is helpful on the electrochemical performance of nickel hydroxide. Compared with the electrode made via the commercial Ni(OH)2, the electrode made via the recovery Ni(OH)2 was found to exhibit higher specific capacitance, better electrochemical reversibility, better stability and lower impedance. The results demonstrate that Ni(OH)2 recovered from nickel-containing wastewater shows high potential as energy storage materials.
摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 晶圓封裝與鍍鎳製程 1
1.2 鍍鎳廢液的回收技術 4
1.3 含鎳能源材料 8
1.4 研究動機 9
第二章 文獻回顧 10
2.1 重金屬廢液的處理技術 10
2.2 化學沉澱法 16
2.3 氫氧化鎳的儲能特性 23
第三章 基本原理 31
3.1 化學沉澱原理 31
3.2 感應耦合電漿原子放射光譜儀 36
3.3 紫外/可見光分光光譜儀 38
3.4 循環伏安法 40
3.5 電化學阻抗譜 43
第四章 實驗設備與方法 48
4.1 實驗藥品與材料 48
4.2 實驗儀器與設備 49
4.3 實驗步驟 50
4.3.1化學沉澱反應 52
4.3.2反應後處理與溶液分析 54
4.3.3沉澱物檢測 56
4.3.4電化學特性量測 58
第五章 結果與討論 61
5.1 影響鍍鎳廢液沉澱的因素 61
5.1.1 pH值效應 62
5.1.2溫度效應 67
5.1.3時間效應 69
5.1.4攪拌效應 72
5.1.5添加劑效應 74
5.2 含鎳沉澱物的性質分析 77
5.2.1 X-射線繞射分析 77
5.2.2傅立葉轉換紅外光譜分析 79
5.2.3拉曼光譜分析 80
5.2.4 SEM-EDS分析 82
5.2.5 TGA分析 86
5.3 回收氫氧化鎳的電化學特性 87
5.3.1氫氧化鎳電極充放電分析 87
5.3.2質子擴散行為 95
5.3.3比電容量分析 98
5.3.4循環穩定性測試 99
5.3.5電化學阻抗分析 102
第六章 結論 106
參考文獻 107
符號編彙 116
[1]許明哲、詹印豐、顏錫鴻,「無電鍍鎳金在凸塊構裝技術應用上之製程控制與成本考量半導體科技」,No.70,2007。
[2]行政院環境保護署環署水字第1040110369號。
http://ivy5.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0290
[3]侯萬善,「廢水金屬處理回收之技術方案與經濟效益」,取自,產業製程清潔生產與綠色技術資訊網,2004。
http://proj.ftis.org.tw/eta/tech/techKnow.asp?HnfiysWJtYX68s43uopfOsWj
[4]Dean, J. G., Bosqui, F. L., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6(6), 518-522.
[5]Grau, J. M., & Bisang, J. (1992). Silver electrodeposition from photographic processing solutions. Journal of chemical technology and biotechnology, 53(1), 105-110.
[6]Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical reviews, 104(10), 4245-4270.
[7]Ohshima, H., & Furusawa, K. (1988). Electrical phenomena at interfaces: fundamentals, measures and application. Vol. 76, Surfactant science series[M]. New York: Marcel Dekker, Inc., 87-89.
[8]Crow, D. R. (1979), Principles and Applications of Electrochemistry, 2nd Ed. Chapman and Hall Ltd. London.
[9]Su, Y. Z., Xiao, K., Li, N., Liu, Z. Q., & Qiao, S. Z. (2014). Amorphous Ni (OH) 2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2(34), 13845-13853.
[10]Hernández-Tapia, J. R., Vazquez-Arenas, J., & González, I. (2013). Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents. Journal of hazardous materials, 262, 709-716.
[11]Mohsen-Nia, M., Montazeri, P., & Modarress, H. (2007). Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination, 217(1), 276-281.
[12]Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256(1), 90-93.
[13]Revathi, M., Saravanan, M., Chiya, A. B., & Velan, M. (2012). Removal of copper, nickel, and zinc ions from electroplating rinse water. CLEAN–Soil, Air, Water, 40(1), 66-79.
[14]Orhan, G., Arslan, C., Bombach, H., & Stelter, M. (2002). Nickel recovery from the rinse waters of plating baths. Hydrometallurgy, 65(1), 1-8.
[15]Njau, K. N., vd Woude, M., Visser, G. J., & Janssen, L. J. J. (2000). Electrochemical removal of nickel ions from industrial wastewater. Chemical Engineering Journal, 79(3), 187-195.
[16]Argun, M. E. (2008). Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. Journal of Hazardous Materials, 150(3), 587-595.
[17]Abdulrasaq, O. O., & Basiru, O. G. (2010). Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. African Journal of Environmental Science and Technology, 4(6).
[18]Ipek, U. (2005). Removal of Ni (II) and Zn (II) from an aqueous solution by reverse osmosis. Desalination, 174(2), 161-169.
[19]Molinari, R., Poerio, T., & Argurio, P. (2008). Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process. Chemosphere, 70(3), 341-348.
[20]Coman, V., Robotin, B., & Ilea, P. (2013). Nickel recovery/removal from industrial wastes: a review. Resources, Conservation and Recycling, 73, 229-238.
[21]Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
[22]Blais, J. F., Djedidi, Z., Cheikh, R. B., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135-149.
[23]Golder, A. K., Dhaneesh, V. S., Samanta, A. N., & Ray, S. (2008). Removal of nickel and boron from plating rinse effluent by electrochemical and chemical techniques. Chemical engineering & technology, 31(1), 143-148.
[24]Kim, B. R., Gaines, W. A., Szafranski, M. J., Bernath, E. F., & Miles, A. M. (2002). Removal of heavy metals from automotive wastewater by sulfide precipitation. Journal of environmental engineering, 128(7), 612-623.
[25]Giannopoulou, I., & Panias, D. (2007). Copper and nickel recovery from acidic polymetallic aqueous solutions. Minerals engineering, 20(8), 753-760.
[26]Salhi, R. (2013). Recovery of nickel and copper from metal fInishing hydroxide sludges by ammoniacal leaching. Mineral Processing and Extractive Metallurgy.
[27]Giannopoulou, I., & Panias, D. (2008). Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy, 90(2), 137-146.
[28]Bratskaya, S. Y., Pestov, A. V., Yatluk, Y. G., & Avramenko, V. A. (2009). Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1), 140-144.
[29]Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J., & Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Separation and Purification Technology, 39(3), 181-188.
[30]Ying, W. C., Bonk, R. R., & Tucker, M. E. (1988). Precipitation treatment of spent electroless nickel plating baths. Journal of hazardous materials, 18(1), 69-89.
[31]Guo, Z. R., Zhang, G., Fang, J., & Dou, X. (2006). Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 14(1), 75-79.
[32]Blue, L. Y., Van Aelstyn, M. A., Matlock, M., & Atwood, D. A. (2008). Low-level mercury removal from groundwater using a synthetic chelating ligand. Water research, 42(8), 2025-2028.
[33]Ghosh, P., Samanta, A. N., & Ray, S. (2011). Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination, 266(1), 213-217.
[34]Alvarez, M. T., Crespo, C., & Mattiasson, B. (2007). Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66(9), 1677-1683.
[35]Pang, F. M., Teng, S. P., Teng, T. T., & Omar, A. M. (2009). Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Quality Research Journal of Canada, 44(2), 174.
[36]李延偉,姚金環,氫氧化鎳的微觀結構設計與電化學儲能特性,北京化學工業出版社,2015,1-13
[37]Subbaiah, T., Mallick, S. C., Mishra, K. G., Sanjay, K., & Das, R. P. (2002). Electrochemical precipitation of nickel hydroxide. Journal of power sources, 112(2), 562-569.
[38]Leite, E. R., & Ribeiro, C. (2012). Classical Crystallization Model: Nucleation and Growth. Crystallization and Growth of Colloidal Nanocrystals, 19-43.
[39]Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. In Proc. R. Soc. A, 471, 20140792.
[40]Bode H, Dehmelt K, Witte J. (1966) Zur Kenntnis der Nickelhydroxidelektrode-I. Über das Nickel(II)-Hydroxidhydrat. Electrochimica. Acta 11, 1079–1087.
[41]Chang, Z., Li, G., Zhao, Y., Ding, Y., & Chen, J. (1998). Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties. Journal of power sources, 74(2), 252-254.
[42]Wang, R., Lang, J., Liu, Y., Lin, Z., & Yan, X. (2015). Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 7(6), 183.
[43]Miao, C., Zhu, Y., Zhao, T., Jian, X., & Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO43−. Ionics, 21(12), 3201-3208.
[44]Li, Y., Yao, J., Zhu, Y., Zou, Z., & Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177-183.
[45]Li, H. B., et al. (2013). Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 4(5).
[46]Wenguang, Z., Dianhui, J., Yuan, Y., Gang, J., & Wenquan, J. (2014). Electrochemical Performance of Ni(OH)2 Positive Materials. Rare Metal Materials and Engineering, 43(9), 2055-2059.
[47]Vijayakumar, S., & Muralidharan, G. (2014). Electrochemical supercapacitor behaviour of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. Journal of Electroanalytical Chemistry, 727, 53-58.
[48]Wu, Q., Wen, M., Chen, S., & Wu, Q. (2015). Lamellar-crossing-structured Ni (OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. Journal of Alloys and Compounds, 646, 990-997.
[49]Singu, B. S., Male, U., Hong, S. E., & Yoon, K. R. (2016). Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics, 1-7.
[50]Min, S., Zhao, C., Zhang, Z., Chen, G., Qian, X., & Guo, Z. (2015). Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 3(7), 3641-3650.
[51]Ertaş, F. S., Saraç, F. E., Ünal, U., & Birer, Ö. (2015). Ultrasound-assisted hexamethylenetetramine decomposition for the synthesis of alpha nickel hydroxide intercalated with different anions. Journal of Solid State Electrochemistry, 19(10), 3067-3077.
[52]Gao, Y., Li, H., & Yang, G. (2015). Amorphous nickel hydroxide nanosheets with ultrahigh activity and super-long-term cycle stability as advanced water oxidation catalysts. Crystal Growth & Design, 15(9), 4475-4483.
[53]Zhang, L., Ding, Q., Huang, Y., Gu, H., Miao, Y. E., & Liu, T. (2015). Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. ACS applied materials & interfaces, 7(40), 22669-22677.
[54]Ulrich Schubert and Nicola Hüsing, Synthesis of Inorganic Materials, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2012, 130-133.
[55]Kiani, M. A., Mousavi, M. F., & Ghasemi, S. (2010). Size effect investigation on battery performance: Comparison between micro-and nano-particles of β-Ni (OH) 2 as nickel battery cathode material. Journal of Power Sources, 195(17), 5794-5800.
[56]Steven S. Zumdahl., Chemical Principles, New York, Houghton Mifflin Company, 2009, 328-347.
[57]温彥楷,電沉積法處理含鎳廢液的研究,碩士學位論文,國立台北科技大學,2015
[58]UC Davis ChemWiki, 2016. http://chem.libretexts.org/Textbook_Maps/Organic_Chemistry_Textbook_Maps/Map%3A_Organic_Chemistry_With_a_Biological_Emphasis_(Soderberg)/Chapter_04%3A_Structure_Determination_I/4.3%3A_Ultraviolet_and_visible_spectroscopy
[59]Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley & Sons, 2001, 226-386.
[60]Monk, Paul M. S., Fundamentals of Electroanalytical Chemistry, New York: John Wiley & Sons, 2001, 158-165.
[61]Conway, B. E.,電化學超級電容器-科學原理及技術應用,北京化學工業出版社,2005,9-510.
[62]Wikipedia, 2016.
https://en.wikipedia.org/wiki/Nickel
[63]Marcel Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974, 331-333.
[64]Salavera, D., Chaudhari, S. K., Esteve, X., & Coronas, A. (2005). Vapor-liquid equilibria of ammonia+ water+ potassium hydroxide and ammonia+ water+ sodium hydroxide solutions at temperatures from (293.15 to 353.15) K. Journal of Chemical & Engineering Data, 50(2), 471-476.
[65]鄭義忠,王唯帆,李偉雄,孫長春,胡文華,影響次微米高分子微球製備因素之探討,中正嶺學報,2005,34(1),337-350.
[66]Xiao-yan, G., & Jian-Cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61(3), 621-625.
[67]管小豔,配位均勻沉澱法合成納米氫氧化鎳及其應用研究,碩士學位論文,湘潭大學,2006年
[68]Liu, C., & Li, Y. (2009). Synthesis and characterization of amorphous α-nickel hydroxide. Journal of Alloys and Compounds, 478(1), 415-418.
[69]Freitas, M. B. J. G. (2001). Nickel hydroxide powder for NiO•OH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources, 93(1), 163-173.
[70]Frost, R. L., Weier, M. L., & Kloprogge, J. T. (2003). Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. Journal of Raman Spectroscopy, 34(10), 760-768.
[71]Deabate, S., Fourgeot, F., & Henn, F. (2000). X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. Journal of power sources, 87(1), 125-136.
[72]Miao, C., Zhu, Y., Huang, L., & Zhao, T. (2015). Synthesis, characterization, and electrochemical performances of alpha nickel hydroxide by coprecipitating Sn2+. Ionics, 21(8), 2295-2302.
[73]Ortiz, M. G., Castro, E. B., & y Real, S. G. (2012). The cobalt content effect on the electrochemical behavior of nickel hydroxide electrodes. international journal of hydrogen energy, 37(13), 10365-10370.
[74]Chang Zhaorong, Ding Yunchang, Zhang Shuxia, and Wang Zeyun(1996),. Influence of size distribution on the activitiy of spherical nickel hydroxide, Battery Bimonthly, 26, 118
[75]Shruthi, B., Raju, V. B., & Madhu, B. J. (2015). Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 683-689.
[76]Shruthi, B., Madhu, B. J., & Raju, V. B. (2016). Influence of TiO2 on the electrochemical performance of pasted type β-nickel hydroxide electrode in alkaline electrolyte. Journal of Energy Chemistry, 25(1), 41-48.
[77]Bernard, M. C., Cortes, R., Keddam, M., Takenouti, H., Bernard, P., & Senyarich, S. (1996). Structural defects and electrochemical reactivity of β-Ni(OH)2. Journal of Power Sources, 63(2), 247-254.
[78]Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., & Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. international journal of hydrogen energy, 35(6), 2539-2545.
[79]Lin, P., She, Q., Hong, B., Liu, X., Shi, Y., Shi, Z., ... & Dong, Q. (2010). The nickel oxide/CNT composites with high capacitance for supercapacitor. Journal of The Electrochemical Society, 157(7), A818-A823.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊