[1]許明哲、詹印豐、顏錫鴻,「無電鍍鎳金在凸塊構裝技術應用上之製程控制與成本考量半導體科技」,No.70,2007。
[2]行政院環境保護署環署水字第1040110369號。
http://ivy5.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0290
[3]侯萬善,「廢水金屬處理回收之技術方案與經濟效益」,取自,產業製程清潔生產與綠色技術資訊網,2004。
http://proj.ftis.org.tw/eta/tech/techKnow.asp?HnfiysWJtYX68s43uopfOsWj
[4]Dean, J. G., Bosqui, F. L., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6(6), 518-522.
[5]Grau, J. M., & Bisang, J. (1992). Silver electrodeposition from photographic processing solutions. Journal of chemical technology and biotechnology, 53(1), 105-110.
[6]Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical reviews, 104(10), 4245-4270.
[7]Ohshima, H., & Furusawa, K. (1988). Electrical phenomena at interfaces: fundamentals, measures and application. Vol. 76, Surfactant science series[M]. New York: Marcel Dekker, Inc., 87-89.
[8]Crow, D. R. (1979), Principles and Applications of Electrochemistry, 2nd Ed. Chapman and Hall Ltd. London.
[9]Su, Y. Z., Xiao, K., Li, N., Liu, Z. Q., & Qiao, S. Z. (2014). Amorphous Ni (OH) 2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2(34), 13845-13853.
[10]Hernández-Tapia, J. R., Vazquez-Arenas, J., & González, I. (2013). Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents. Journal of hazardous materials, 262, 709-716.
[11]Mohsen-Nia, M., Montazeri, P., & Modarress, H. (2007). Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination, 217(1), 276-281.
[12]Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256(1), 90-93.
[13]Revathi, M., Saravanan, M., Chiya, A. B., & Velan, M. (2012). Removal of copper, nickel, and zinc ions from electroplating rinse water. CLEAN–Soil, Air, Water, 40(1), 66-79.
[14]Orhan, G., Arslan, C., Bombach, H., & Stelter, M. (2002). Nickel recovery from the rinse waters of plating baths. Hydrometallurgy, 65(1), 1-8.
[15]Njau, K. N., vd Woude, M., Visser, G. J., & Janssen, L. J. J. (2000). Electrochemical removal of nickel ions from industrial wastewater. Chemical Engineering Journal, 79(3), 187-195.
[16]Argun, M. E. (2008). Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. Journal of Hazardous Materials, 150(3), 587-595.
[17]Abdulrasaq, O. O., & Basiru, O. G. (2010). Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. African Journal of Environmental Science and Technology, 4(6).
[18]Ipek, U. (2005). Removal of Ni (II) and Zn (II) from an aqueous solution by reverse osmosis. Desalination, 174(2), 161-169.
[19]Molinari, R., Poerio, T., & Argurio, P. (2008). Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process. Chemosphere, 70(3), 341-348.
[20]Coman, V., Robotin, B., & Ilea, P. (2013). Nickel recovery/removal from industrial wastes: a review. Resources, Conservation and Recycling, 73, 229-238.
[21]Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
[22]Blais, J. F., Djedidi, Z., Cheikh, R. B., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135-149.
[23]Golder, A. K., Dhaneesh, V. S., Samanta, A. N., & Ray, S. (2008). Removal of nickel and boron from plating rinse effluent by electrochemical and chemical techniques. Chemical engineering & technology, 31(1), 143-148.
[24]Kim, B. R., Gaines, W. A., Szafranski, M. J., Bernath, E. F., & Miles, A. M. (2002). Removal of heavy metals from automotive wastewater by sulfide precipitation. Journal of environmental engineering, 128(7), 612-623.
[25]Giannopoulou, I., & Panias, D. (2007). Copper and nickel recovery from acidic polymetallic aqueous solutions. Minerals engineering, 20(8), 753-760.
[26]Salhi, R. (2013). Recovery of nickel and copper from metal fInishing hydroxide sludges by ammoniacal leaching. Mineral Processing and Extractive Metallurgy.
[27]Giannopoulou, I., & Panias, D. (2008). Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy, 90(2), 137-146.
[28]Bratskaya, S. Y., Pestov, A. V., Yatluk, Y. G., & Avramenko, V. A. (2009). Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1), 140-144.
[29]Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J., & Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Separation and Purification Technology, 39(3), 181-188.
[30]Ying, W. C., Bonk, R. R., & Tucker, M. E. (1988). Precipitation treatment of spent electroless nickel plating baths. Journal of hazardous materials, 18(1), 69-89.
[31]Guo, Z. R., Zhang, G., Fang, J., & Dou, X. (2006). Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 14(1), 75-79.
[32]Blue, L. Y., Van Aelstyn, M. A., Matlock, M., & Atwood, D. A. (2008). Low-level mercury removal from groundwater using a synthetic chelating ligand. Water research, 42(8), 2025-2028.
[33]Ghosh, P., Samanta, A. N., & Ray, S. (2011). Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination, 266(1), 213-217.
[34]Alvarez, M. T., Crespo, C., & Mattiasson, B. (2007). Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66(9), 1677-1683.
[35]Pang, F. M., Teng, S. P., Teng, T. T., & Omar, A. M. (2009). Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Quality Research Journal of Canada, 44(2), 174.
[36]李延偉,姚金環,氫氧化鎳的微觀結構設計與電化學儲能特性,北京化學工業出版社,2015,1-13
[37]Subbaiah, T., Mallick, S. C., Mishra, K. G., Sanjay, K., & Das, R. P. (2002). Electrochemical precipitation of nickel hydroxide. Journal of power sources, 112(2), 562-569.
[38]Leite, E. R., & Ribeiro, C. (2012). Classical Crystallization Model: Nucleation and Growth. Crystallization and Growth of Colloidal Nanocrystals, 19-43.
[39]Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. In Proc. R. Soc. A, 471, 20140792.
[40]Bode H, Dehmelt K, Witte J. (1966) Zur Kenntnis der Nickelhydroxidelektrode-I. Über das Nickel(II)-Hydroxidhydrat. Electrochimica. Acta 11, 1079–1087.
[41]Chang, Z., Li, G., Zhao, Y., Ding, Y., & Chen, J. (1998). Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties. Journal of power sources, 74(2), 252-254.
[42]Wang, R., Lang, J., Liu, Y., Lin, Z., & Yan, X. (2015). Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 7(6), 183.
[43]Miao, C., Zhu, Y., Zhao, T., Jian, X., & Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO43−. Ionics, 21(12), 3201-3208.
[44]Li, Y., Yao, J., Zhu, Y., Zou, Z., & Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177-183.
[45]Li, H. B., et al. (2013). Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 4(5).
[46]Wenguang, Z., Dianhui, J., Yuan, Y., Gang, J., & Wenquan, J. (2014). Electrochemical Performance of Ni(OH)2 Positive Materials. Rare Metal Materials and Engineering, 43(9), 2055-2059.
[47]Vijayakumar, S., & Muralidharan, G. (2014). Electrochemical supercapacitor behaviour of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. Journal of Electroanalytical Chemistry, 727, 53-58.
[48]Wu, Q., Wen, M., Chen, S., & Wu, Q. (2015). Lamellar-crossing-structured Ni (OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. Journal of Alloys and Compounds, 646, 990-997.
[49]Singu, B. S., Male, U., Hong, S. E., & Yoon, K. R. (2016). Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics, 1-7.
[50]Min, S., Zhao, C., Zhang, Z., Chen, G., Qian, X., & Guo, Z. (2015). Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 3(7), 3641-3650.
[51]Ertaş, F. S., Saraç, F. E., Ünal, U., & Birer, Ö. (2015). Ultrasound-assisted hexamethylenetetramine decomposition for the synthesis of alpha nickel hydroxide intercalated with different anions. Journal of Solid State Electrochemistry, 19(10), 3067-3077.
[52]Gao, Y., Li, H., & Yang, G. (2015). Amorphous nickel hydroxide nanosheets with ultrahigh activity and super-long-term cycle stability as advanced water oxidation catalysts. Crystal Growth & Design, 15(9), 4475-4483.
[53]Zhang, L., Ding, Q., Huang, Y., Gu, H., Miao, Y. E., & Liu, T. (2015). Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. ACS applied materials & interfaces, 7(40), 22669-22677.
[54]Ulrich Schubert and Nicola Hüsing, Synthesis of Inorganic Materials, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2012, 130-133.
[55]Kiani, M. A., Mousavi, M. F., & Ghasemi, S. (2010). Size effect investigation on battery performance: Comparison between micro-and nano-particles of β-Ni (OH) 2 as nickel battery cathode material. Journal of Power Sources, 195(17), 5794-5800.
[56]Steven S. Zumdahl., Chemical Principles, New York, Houghton Mifflin Company, 2009, 328-347.
[57]温彥楷,電沉積法處理含鎳廢液的研究,碩士學位論文,國立台北科技大學,2015[58]UC Davis ChemWiki, 2016. http://chem.libretexts.org/Textbook_Maps/Organic_Chemistry_Textbook_Maps/Map%3A_Organic_Chemistry_With_a_Biological_Emphasis_(Soderberg)/Chapter_04%3A_Structure_Determination_I/4.3%3A_Ultraviolet_and_visible_spectroscopy
[59]Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley & Sons, 2001, 226-386.
[60]Monk, Paul M. S., Fundamentals of Electroanalytical Chemistry, New York: John Wiley & Sons, 2001, 158-165.
[61]Conway, B. E.,電化學超級電容器-科學原理及技術應用,北京化學工業出版社,2005,9-510.
[62]Wikipedia, 2016.
https://en.wikipedia.org/wiki/Nickel
[63]Marcel Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974, 331-333.
[64]Salavera, D., Chaudhari, S. K., Esteve, X., & Coronas, A. (2005). Vapor-liquid equilibria of ammonia+ water+ potassium hydroxide and ammonia+ water+ sodium hydroxide solutions at temperatures from (293.15 to 353.15) K. Journal of Chemical & Engineering Data, 50(2), 471-476.
[65]鄭義忠,王唯帆,李偉雄,孫長春,胡文華,影響次微米高分子微球製備因素之探討,中正嶺學報,2005,34(1),337-350.
[66]Xiao-yan, G., & Jian-Cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61(3), 621-625.
[67]管小豔,配位均勻沉澱法合成納米氫氧化鎳及其應用研究,碩士學位論文,湘潭大學,2006年
[68]Liu, C., & Li, Y. (2009). Synthesis and characterization of amorphous α-nickel hydroxide. Journal of Alloys and Compounds, 478(1), 415-418.
[69]Freitas, M. B. J. G. (2001). Nickel hydroxide powder for NiO•OH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources, 93(1), 163-173.
[70]Frost, R. L., Weier, M. L., & Kloprogge, J. T. (2003). Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. Journal of Raman Spectroscopy, 34(10), 760-768.
[71]Deabate, S., Fourgeot, F., & Henn, F. (2000). X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. Journal of power sources, 87(1), 125-136.
[72]Miao, C., Zhu, Y., Huang, L., & Zhao, T. (2015). Synthesis, characterization, and electrochemical performances of alpha nickel hydroxide by coprecipitating Sn2+. Ionics, 21(8), 2295-2302.
[73]Ortiz, M. G., Castro, E. B., & y Real, S. G. (2012). The cobalt content effect on the electrochemical behavior of nickel hydroxide electrodes. international journal of hydrogen energy, 37(13), 10365-10370.
[74]Chang Zhaorong, Ding Yunchang, Zhang Shuxia, and Wang Zeyun(1996),. Influence of size distribution on the activitiy of spherical nickel hydroxide, Battery Bimonthly, 26, 118
[75]Shruthi, B., Raju, V. B., & Madhu, B. J. (2015). Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 683-689.
[76]Shruthi, B., Madhu, B. J., & Raju, V. B. (2016). Influence of TiO2 on the electrochemical performance of pasted type β-nickel hydroxide electrode in alkaline electrolyte. Journal of Energy Chemistry, 25(1), 41-48.
[77]Bernard, M. C., Cortes, R., Keddam, M., Takenouti, H., Bernard, P., & Senyarich, S. (1996). Structural defects and electrochemical reactivity of β-Ni(OH)2. Journal of Power Sources, 63(2), 247-254.
[78]Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., & Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. international journal of hydrogen energy, 35(6), 2539-2545.
[79]Lin, P., She, Q., Hong, B., Liu, X., Shi, Y., Shi, Z., ... & Dong, Q. (2010). The nickel oxide/CNT composites with high capacitance for supercapacitor. Journal of The Electrochemical Society, 157(7), A818-A823.