跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃欽銘
研究生(外文):Chin-Ming Huang
論文名稱:以CaO捕獲廢氣中二氧化碳溫室氣體之吸附與再生效能研究
論文名稱(外文):Adsorption and Regeneration of Carbon Dioxide from Waste Gas by CaO Chemical Adsorbent
指導教授:白曛綾
指導教授(外文):Hsunling Bai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院碩士在職專班永續環境科技組
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:溫室效應吸附二氧化碳捕獲與封存氧化鈣
外文關鍵詞:Greenhouse EffectadsorptionCCS (carbon dioxide capture and storage)CaO
相關次數:
  • 被引用被引用:3
  • 點閱點閱:660
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目標是以台灣3個不同礦區所生產的石灰石進行CO2溫室氣體吸脫附特性研究。探討之參數包括幾個重要操作參數對CO2吸脫附之影響,本次測試之操作參數包括石灰石(CaCO3)的種類、石灰(CaO)補充率、再生循環次數、CO2體積分率、處理氣體含水率等。
測試結果顯示,實驗所用的各種類石灰石經過鍛燒產生之CaO,對CO2吸附量相差很小。當石灰石在700℃恆溫進行CO2的吸脫附實驗時,有較高的吸附量與較佳的反覆吸脫附再生性,但是其吸脫附速率較低;而在950℃脫附、650℃吸附時,則有較高的吸脫附速率,但其CO2吸附量較低。在石灰(CaO)補充率實驗中,隨著補充率增加,CO2吸附量亦隨之提高,唯增加幅度不大。而於吸附時通入水氣增濕,對於CO2的吸附有加強的效果。最後隨著CO2體積分率的升高(10%增加至50% v/v),CaO對CO2的吸附速率顯著提高,但吸附量會有略微下降的趨勢。而反覆10次的吸脫附實驗雖然CO2吸附量逐漸降低但還是維持0.2 gCO2/gCaO吸附量,而且衰減的速率的有越來越慢的趨勢。
經由此次研究後,可知CaO的確具有相當高的CO2吸附量,但商用石灰石有再生率不佳的缺點,如何提升再生率,將是未來研究的課題。
The purpose of this study is to understand the CO2 adsorption characteristics and its regeneration by limestone from three different mining areas in Taiwan. The important operating parameters being researched are limestone type, limestone supplement volume, number of regeneration times, different CO2 concentration, and gas moisture content.
The test result indicates that after calcination the difference between each limestone is very small in terms of their CO2 adsorbing amounts. As the adsorption and regeneration of CO2 was at constant temperature of 700℃, it has greater CO2 absorbing amount and regenerative ability, but its adsorption rate is lower. On the other hand, as regenerated at 950℃ and adsorbed at 650℃, the adsorption rate is faster whereas the adsorption amount is lower. In the experiment of limestone supplement volume, as the CO2 supplement rate increases the adsorption capacity is enhanced. The presence of moisture increases the adsorption capacity of CO2. Increasing the CO2 inlet concentration from 10% to 50% (v/v) leads to an increase of the CO2 adsorption rate, but the adsorption capacity is slightly smaller. Result on the 10 times of cyclic adsorption test shows that the CO2 adsorption capacity reduces gradually, but it still maintains at adsorptive capacity of around 0.2g CO2/gCaO.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、 前言 1
1.1 研究動機與背景 1
1.2 研究目的 7
二、 文獻回顧 9
2.1 二氧化碳捕獲技術概況 11
2.1.1 吸附法.. 17
2.1.2 吸收法. 22
2.1.3 薄膜分離法. 26
2.1.4 富氧燃燒法. 32
2.1.5 低溫冷凝法(低溫蒸餾法). 32
2.2 金屬氧化物吸附原理. 36
2.3 CaO捕獲二氧化碳文獻回顧. 41
2.4 CaO的改質.. 45
2.4.1 濕式沉降處理程序 45
2.4.2 添加鹽類. 48
2.4.3 添加鹼金屬. . 48
2.4.4 前驅物製備CaO.. 49
三、 研究方法 54
3.1 實驗材料 54
3.2 實驗設備 54
3.3 實驗流程. 57
3.4 名詞定義... 58
四、 結果與討論.. 60
4.1 探討最佳之石灰石礦產種類.. 60
4.1.1 石灰石重量損失測試 60
4.1.2 反應穩定時間測試 60
4.1.3 石灰石種類及CO2氣體含水率對系統操作的影響 66
4.2 CO2進流濃度的影響 66
4.3 石灰石再生率測試 70
4.3.1 等溫吸脫附與等速加溫吸脫附模式之比較 70
4.3.2 石灰石(CaCO3)補充率對去除率的影響 75
4.4 與實驗級氧化鈣之反覆再生比較. 79
五、 結論與建議.. 83
5.1 結論.. 83
5.2 建議.. 84
參考文獻 .. 86
1. 行政院國家永續發展委員會全球資訊網,http://ivy2.epa.gov.tw/NSDN/index.asp,2006。
2. S. Ueno, D. D. Jayaseelan, J. She, N. Kondo, T. Ohji and S. Kanzaki (2004) “Carbon Dioxide Absorption Mechanisms of Sodium Added to Calcium Oxide at High Temperatures” Ceramics International, vol.30, 1031-1034.
3. M. V. Iyer, H. Gupta, B. B. Sakadjian and L.-S. Fan (2004) “Multicyclic Study on the Simultaneous Carbonation and Sulfation of High-Reactivity CaO” Ind. Eng. Chem. Res., vol.43, 3939-3947.
4. 工研院 (2005) “我國未來能源規劃-能源工程模型之應用與維護”,經濟部能源局委辦計劃期末報告。
5. 行政院環保署全球資訊網,http://www.epa.gov.tw/main/index.asp,2005。
6. 經濟部工業局全球資訊網,http://www.moea.gov.tw/,2005。
7. IPCC第三工作組 (2005) “二氧化碳捕獲和封存”,政府間氣候變化專門委員會研究計畫,ISBN92-9169-519-X。
8. D. Aaron and C. Tsouris (2005) “Separation of CO2 from Flue Gas:A Review” Separation Science and Teclinology, vol.40, 321-348.
9. G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee (2005) “Aminoproyl-Functionalized Mesoporous Silicas as CO2 Adsorbents” Fuel Processing Technology, vol.86, 1435-1448.
10. S. Kim, J. Ida, V. V. Guliants and J. Y. S. Lin (2005) “Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2” J. Phys. Chem., vol.109, 6287-6293.
11. F. Zheng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, T. S. Zemanian and C. L. Aardahl (2005) “Ethylendiamine-Modified SBA-14 as Regenerable CO2 Sorbent” Ind. Eng. Chem. Res., vol.44, 3099-3105.
12. J. Wuhrer, Chem. lng. Tech., vol.30, 19, 1958.
13. 潘守保 (1998),以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究,國立交通大學環境工程研究所碩士論文。
14. 經濟部礦務局,http://www.mine.gov.tw/,2006。
15. G. S. Grasa and J. C. Abanades (2006) “CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles” Ind. Eng. Chem. Res., vol.45, 8846-8851.
16. J. C. Abanades, E. S. Rubin and E. J. Anthony (2004) “Sorbent Cost and Performance in CO2 Capture Systems” Ind. Eng. Chem. Res., vol.43, 3462-3466.
17. R. W. Hughes, D. Lu, E. J. Anthony and Y. Wu (2004) “Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor” Ind. Eng. Chem. Res., vol.43, 5529-5539.
18. B. R. Stanmore and P. Gilot (2005) “Review—Calcination and Carbonation of Limestone During Thermal Cycling for CO2 Sequestration” Fuel Processing Technology, vol.86 1707– 1743.
19. Carbon Sequesration Technology Roadmap and Program Plan-2004, NETL/DOE, April, 2004.
20. J. Lu, L. Wang, X. Sun, J. Li and X. Liu (2005) “Absorption of CO2 into Aqueous Solutions of Methyldiethanolamine and Activated Methyldiethanolamine from a Gas Mixture in a Hollow Fiber Contactor” Ind. Eng. Chem. Res., vol.44, no.24, 9230 -9238.
21. C. Chen (2003) A Technical and Economic Assessment of Selexol-based CO2 Capture Technology for IGCC Power Plants, Union Carbide Corporation, USA.
22. H. Schlichting (2003) Up-Date on Lurgi Syngas Technologies, Technologies Gasification Technologies, San Francisco, USA.
23. D. Dortmundt and K. Doshi (1999) Recent Developments in CO2 Removal Membrane Technology, UOP, USA.
24. T. Novak (2005) “Terrestrial Fauna From Cavities in Northern and Central Slovenia, and a Review of Systematically Ecologically Investigated Cavities” Acta carsologica, vol.34/1, no.10, 169-210.
25. R. M. Bowler, S. Gysens, C. Hartney, L. Ngo, S. S. Rauch and J. Midtling (2002) “Increased Medication Use in a Community Environmentally Exposed to Chemicals” Industrial Health, vol.40, 335-344.
26. R. B. Fedich, D. S. McCaffrey Jr. and J. F. Stanley (2005) Advanced Gas Treating to Enhance Producing and Refining Projects using FLEXSORB@ SE Solvents, ExxonMobil Research and Engineering Company, USA。
27. V. K. Bali and A. K. Maheshwari (2005) A Case Study of CO2 Removal System Problems/Failures in an Ammonia Plant, IFFCO Aonla Unit, India。
28. UOP Homepage, http://www.uop.com/gasprocessing/6010.html, 2005.
29. H. Herzog (1999) An Introduction to CO2 Separation and Capture Technologies, MIT Energy Laboratory, August, USA。
30. C. Higman and G. Grünfelder (1990), “Clean Power Generation From Heavy Residues The LURGI SGP-IGCC Concept”, presented at the Conference “Power Generation and the Environment” Institution of Mechanical Engineers, November, London, England。
31. P. J. Teevens and P. Eng. (2004) Electrochemical Noise - A Potent Weapon in the Battle Against Sour Gas Plant Corrosion, AEC West Ltd., Canada.
32. 李政弘(2001)“溫室效應氣體減量技術推廣與輔導計畫”,經濟部工業局委託計畫期末報告。
33. Membrana Homepage, http://www.membrana.com/index_neu.phtml, 2005.
34. DOW Homepage, http://www.dow.com/, 2005.
35. 日本產業技術綜合研究所網頁,http://www.aist.go.jp/index_en.html,2006。
36. 美國喬治亞理工學院網頁,http://www.gatech.edu/,2005。
37. IEA GHG program. Link, http://www.ieagreen.org.uk/index.html, 2005。
38. 陳君豪(2001),利用真空變壓吸附法濃縮及回收二氧化碳,國立中央大學化學工程研究所碩士論文。
39. 工研院 (2005) “半乾式吸收技術應用於二氧化碳控制之研究”, 經濟部委辦FY95創新前瞻構想可行性研究計畫結案報告。
40. 經濟部工業局 (2003) “以薄膜回收二氧化碳之技術手冊”, http://www.itri.org.tw/cfc/co2/publish/tech/membrane.doc。
41. 三菱重工業株式會社網頁,http://www.mhi.co.jp/indexe.html,2007。
42. New Energy and Industrial Technology Development Organization (2002) “有關全球變暖對策技術開發的調查/CO2分離回收技術的調查研究”(原文為:地球温暖化対策技術開発に関する調査╱CO2の分離・回収技術に関する調査研究);http://www.nedo.go.jp/。
43. The Energetics of Carbon Dioxide Capture in Power Plants, 2004, 168-169.
44. H. Gupta and L. Fan (2002) “Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas” Ind. Eng. Chem. Res., vol.41, 4035-4042.
45. Q. Chunzhen, X. Yunhan, T. Wendong and Y. Shaojun (2006) “Repetitive Calcination-Carbonation Capability of Ca-based CO2 Absorbent” Journal of Chemical Industry and Engineering (China), vol.57, no.12, 2953-2958.
46. D. Alvarez and J. C. Abanades (2005) “Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2” Ind. Eng. Chem. Res., vol.44, 5608-5615.
47. J. C. Abanades (2002) “The Maximum Capture Efficiency of CO2 Using a Carbonation/Calcination Cycle of CaO/CaCO3” Chemical Engineering Journal, vol.90, 303–306.
48. J. C. Abanades and D. Alvarez (2003) “Conversion Limits in the Reaction of CO2 with Lime” Energy Fuels, vol.17, 308– 315.
49. D. Mess, A. F. Sarofim and J. P. Longwell (1999) “Product Layer Diffusion During the Reaction of Calcium Oxide with Carbon Dioxide” Energy and Fuels, vol.13, 999-1005.
50. C. Salvador, E. J. Anthony and J. C. Abanades (2003) “Enhancement of CaO for CO2 Capture in an FBC Environment” Chemical Engineering Journal, vol.96, 187-195.
51. E. P. Reddy and P. G. Smirniotis (2004) “High-Temperature Sorbent for CO2 Made of Alkali Metals Doped on CaO Supports” J. Phys. Chem., vol.108, 7794-7800.
52. H. Lu, E. P. Reddy and P. G. Smirniotis (2006) “Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatured” Ind. Eng. Chem. Res., vol.45, 3944-3949.
53. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni (2002) “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture” Energy & Fuels, vol.16, 1463-1469.
54. R. V. Siriwardane, M. S. Shen, E. P. Fisher and J. A. Poston (2001) “Adsorption of CO2 on Molecular Sieves and Activated Carbon” Energy Fuels, vol.15, 279-284.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊