跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳澤民
研究生(外文):Tse-min Chen
論文名稱:奈米碳纖高分子複材三維力量感測元件設計與製作
論文名稱(外文):Design and Fabrication of Three-Dimensional Force Sensor Device with Carbon Nano-Fiber Polymer Composites
指導教授:張復瑜
指導教授(外文):Fuh-yu Chang
口試委員:張復瑜
口試日期:2011-06-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:131
中文關鍵詞:奈米碳纖壓阻效應滑鼠指標
外文關鍵詞:carbon nano-fiberpiezoresistive effectmouse cursor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一奈米碳纖薄膜壓阻方向感測元件,此感測元件可感測三維力量,更具備良好的可撓性。另外,此元件設計製造程序較傳統力量感測元件簡易,且適合大量生產。其感測單元的製作為使用滴定的方式塗佈在經過圖案化大氣電漿進行表面親疏水處理的聚醯亞胺(Polyimide)基板上。本研究並利用表面接觸角量測設備、X光光電子能譜儀、掃描式電子顯微鏡(SEM)和原子力顯微鏡(AFM)探討大氣電漿處理前後之表面親疏水性、官能基與元素組成以及表面輪廓形態的改變。將感測單元製作成四個相對、具辨認力量方向功能的可撓性感測元件,並經由多通道數位電錶的電阻值量測及彼此變形產生的訊號差異,來進行三維力量判讀。
本研究進一步利用所製作的三維力量感測元件開發奈米碳纖高分子複材游標指向裝置。研究中以內建OP放大器、類比數位轉換器(ADC)和多工器的PSoC晶片開發掃描電路,再經由USB介面下達游標的移動的指令。本研究成功展示以所開發的奈米碳纖高分子複材游標指向裝置及掃描電路驅動電腦螢幕的游標。
In this study we proposed an innovative piezoresistive sensing device fabricated with carbon nano-fiber thin film. The device is able to detect three-dimensional forces and with excellent flexibility. Besides, the fabrication process of this device is simpler than that of traditional force sensors, and easy to be produced by mass production. The device has four strain sensors made on a polyimide substrate by patterning surface treatment and tilted-drop process. The hydrophilic and hydrophobic surface treatments were performed by atmospheric plasma, and the treated surfaces are investigated by contact angle measurement, x-ray photo electron spectroscopy and scanning electron microscope to study their functional groups, element composition and morphological surface profile. The fabricated flexible device which has four sensors in opposite directions can recognize three-dimensional forces by means of measuring and analyzing the resistance of the four sensors. The flexible device was applied to develop a cursor pointing device. A PSoC chip with built-in OP amplifier, analog to digital converter and multiplexer was used to develop a scanning circuit for the cursor pointing device. We successfully demonstrated to move the computer screen cursor by the developed cursor pointing device.
摘要I
AbstractII
致謝III
目錄IV
圖目錄VIII
表目錄XV
符號說明XVI
第一章 緒論1
1.1 前言1
1.2 研究動機與目的3
1.3 文獻回顧4
1.3.1 可撓式觸覺感測器5
1.3.2 具辨認方向感測器9
1.3.3 壓阻高分子複材12
1.3.4 聚醯亞胺15
1.4 論文架構16
第二章 理論基礎18
2.1 壓阻式感測器原理18
2.2 導電高分子複合材料之導電機制20
2.2.1 導電高分子複合材料20
2.2.2 導電粒子20
2.2.3 高分子基材21
2.2.4 導電高分子之導電機制22
2.2.5 滲透理論22
2.3 奈米碳纖高分子複材游標指向裝置感測機制28
第三章 製造方法與步驟30
3.1 製程規劃30
3.2 製程設計31
3.2.1 基板選用及表面處理32
3.2.2 壓阻高分子複材溶液調配39
3.2.3 奈米碳纖高分子複材游標指向裝置製作43
第四章 量測系統47
4.1 控制系統47
4.2 實驗架設環境49
4.3 掃瞄電路系統52
第五章 結果與討論57
5.1 壓阻式感測器之特性量測59
5.1.1 壓阻式感測器下壓電阻值量測59
5.1.2 壓阻式感測器無下壓側移電阻值量測65
5.1.3 壓阻式感測器下壓同時側移電阻值量測67
5.1.4 壓阻式感測器放置重量電阻值量測78
5.1.5 奈米碳纖高分子複材游標指向裝置執行方法82
5.2 大氣電漿處理聚醯亞胺(PI)之表面潤濕性量測85
5.2.1 大氣電漿疏水表面潤濕性量測85
5.2.2 大氣電漿親水表面潤濕性量測87
5.3 大氣電漿處理聚醯亞胺(PI)之表面分析90
5.3.1 表面疏水性量測91
5.3.2 表面親水性量測91
5.3.3 PI經大氣電漿處理表面化學成份變化91
5.4 聚醯亞胺(PI)表面形貌的觀察97
5.5 聚醯亞胺(PI)表面粗糙度量測99
5.6 單一導電高分子複合材料應變敏感性量測100
第六章 結論與未來展望102
6.1 結論102
6.2 未來展望104
參考文獻105
[1]T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. Luo, “Development of the tactile sensor of a human-interactive robot RI-MAN”, IEEE Transactions on Robotics, vol.24, pp.505-512, 2008.
[2]Y. Ohmura, and Y. Kuniyoshi, “Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback”, Intelligent Robots and Systems. Proceedings. IEEE/RSJ International Conference, pp.1136-1141, 2007.
[3]K. Oliver, W. Karsten, and W. Heinz, “Development of a flexible tactile sensor system for a humanoid robot”, Intelligent Robots and Systems. Proceedings. IEEE/RSJ Internnational Conference, vol.1, pp.1-6, 2003.
[4]B. Choi, S. Lee, H. R. Choi, and S. Kang, “Development of anthropomorphic robot hand with tactile sensor : SKKU Hand II”, Intelligent Robots and Systems. Proceedings. IEEE/RSJ International Conference, vol.1-12, pp.3779-3784, 2006.
[5]Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films”, Sensors and Actuators A-Physical, vol.143, pp.143-153, 2008.
[6]F. Y. Chang, R. H. Wang, H. Yang, Y. H. Lin, T. M. Chen, and S. J. Huang, “Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films”, Thin Solid Film, vol. 518, pp.7343-7347, 2010.
[7]F. Y. Chang, R. H. Wang, Y. H. Lin, T. M. Chen, Y. F. Lee, and C. M. Liu, “Flexible sensing arrays fabricated with carbon nano-fiber composite thin films for posture monitoring”, Microprocesses and Nanotechnology Conference, 2010.
[8]N. Saito, T. Satoh, and H. Okano, “Grasping Force Control in consideration of Translational and Rotational Slippage by a Flexible Sensor”, IEEE Industrial Electronics, IECON 32nd Annual Conference, pp.3892-3897, 2006.
[9]M. Sohgawa, H. Onishi, Y. M. Huang, T. Kanashima, and K. Yamashita, “Detection of Normal and Shear Stresses by Tactile Sensors with Piezoresistive Micro-Cantilever and Elastomer”, 2008.
[10]L. Beccai, S. Roccella, L. Ascari, P. Valdastri, A. Sieber, M. Chiara Carrozza, and P. Dario, “Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand”, IEEE/ASME Transactions on Mechatronics, vol.13, pp.158-168, 2008.
[11]S. Teshigawara, M. Ishikawa, and M. Shimojo, “Study of High Speed and High Sensitivity Slip Sensor Characteristic of conductive material”, SICE Annual Conference, pp.900-903, 2008.
[12]S. Takenawa, “A soft three-axis tactile sensor based on electromagnetic induction”, IEEE International Conference on Mechatronics, pp.1-6, 2009.
[13]I. Fujimoto, T. Maeno, Y. Yamada, T. Morizono, and Y. Umetani, “Development of Artificial Finger Skin to Detect Incipient Slip for Realization of Static Friction Sensation”, Proceedings. IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp.15-20, 2003.
[14]P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite”, Science, vol.265, pp.1212-1214, 1994.
[15]M. Knite, V. Tupureina, A. Fuith, J. Zavickis, and V. Teteris, “Polyisoprene—multi-wall carbon nanotube composites for sensing strain”, Materials Science and Engineering, vol.27, pp.1125-1128, 2007.
[16]M. Park, H. Kim, and J. P Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films”, Nanotechnology, vol.19, pp.55705-55712, 2008.
[17]G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, “Low percolation thresholds of electrical conductivity and rheologyin poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes”, Science, vol.47, pp.480-484, 2006.
[18]X. Jiang, Y. Bin, and M. Matsuo, “Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization”, Polymer, vol.46, pp.7418-7424, 2005.
[19]C. E. Sroog, “Polymides”, Progress in Polymer Science, vol.16, pp.561-694, 1991.
[20]G. R. Cotton, “Mixing of carbon black with rubber. II: Mechanism of carbon black incorporation”, Rubber chemistry and technology, vol.58, pp.774-784, 1985.
[21]朱添銘,高分子工業雜誌,十一月號, pp.46, 1997.
[22]R. A. Zoppi, and M. D. Paoli, “Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM III. Electrochemical characterization”, Journal of electroanalytical chemistry, vol.437, pp.175-182, 1997.
[23]G. Pearson, U.S. Patent No.2,258,958(issued 14 October 1941)
[24]劉佳明,“正溫度係數高分子複合導電膜之研究-奈米銀粒子/聚亞醯胺混成系統”,國立清華大學碩士論文,2007.
[25]S. R. Broadbent, and J. M. Hammersley, “Percolation processes. I. Crystals and mazes”, Proc. Camb. Philos. Soc. vol.53, pp.629, 1957.
[26]D. B. Gingold, and C. J. Lobb, “Percolative Conduction in Three Dimensions”, Phys. Rev. vol.42, pp.8220, 1990.
[27]曹展謀,“應用於仿生機器人之可高度伸展的觸覺感測陣列”,國立臺灣大學碩士論文,2009.

[28]D. Stauffer, “Introduction to percolation Theory”, Taylor & Francis, London. U.K., 1985
[29]D. Stauffer, and A. Aharony, Introduction to Percolation Theory, 4th. ed. (Taylor&Francis, London, 1985).
[30]S. Kirkpatrick, “Percolation and conduction”, Rev. Mod. Phys., vol.45, pp.574-588, 1973.
[31]A. B. Harris, “Field-theoretic approach to biconnectedness in percolating systems”, Phys. Rev. vol.28, pp.2614, 1983.
[32]M. Park, H. Kim, and J. P Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films”, Nanotechnology, vol.19, pp.55705-55712, 2008.
[33]J. R. Roth, “Applications to nonthermal plasma processing”, Industrial Plasma Engineering, vol.2, IOP Publishing, Philadelphia, 2001.
[34]J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, and R. F. Hicks, “Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source”, Journal of Applied Physics, vol.89, pp.20-28, 2001.
[35]S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure”, Applied Physics Letters, vol.84, pp.188-190, 2004.
[36]S. A. Kulinich, and M. Farzaneh, “Hydrophobic properties of surfaces coated with fuoroalkylsiloxane and alkylsiloxane monolayers”, Surface Science, vol.573, pp.379-390, 2004.
[37]林育賢,“應用壓阻高分子複材製作軟性應變感測陣列”,國立臺灣科技大學碩士論文,2010.
[38]黃信華,“電容式可撓性觸覺感測陣列的研製”, 國立台灣大學機械工程系碩士論文,2009.
[39]A. Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application, IEEE Press, NY, 1994.
[40]A. Ulman, An Introduction to Ultra-thin Organic Films From Langmuir-Blodgett to Self-Assembly, Part 3, Rochester, 1991.
[41]N. Sprang, D. Theirich, and J. Engemann, “Plasma and Ion Beam Surface Treatment of Polyethylene”, Surface and Coating Technology, vol.74-75, pp.689-695, 1995.
[42]張光輝,“大氣電漿處理聚苯乙烯及表面接枝聚合聚異丙基
丙烯醯胺之研究”, 大同大學碩士論文,2009.
[43]C. C. Wang, and G. H. Hsiue, “Glucose Oxidase Immobilization onto a Plasma-Induced Graft Copolymerized Polymeric Membrane Modified by Poly(Ethylene Oxide)as a Spacer”, Journal of Applied Polymer Science, vol.50, pp.1141-1149, 1993.
[44]H. Yasuda, Plasma Polymerization, Orlando, Academic Press, 1985.
[45]H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials, John Wiley & Sons, Inc., 1990.
[46]Y. L Hsieh, and M. Wu, “Residual Reactivity for Surface Grafting of Acrylic Acid on Argon Glow-discharged Poly(ethylene terephalate)(PET) Films”, Journal of Applied Polymer Science, vol.43, pp.2067-2082, 1991.
[47]L. Dai, H. A. W. Stjohn, J. Bi, P. Zientek, R. C. Chatelier, and H. J. Griesser, “Biomedical Coatings by the Covalent Immobilization of Polysaccharides onto Gas-Plasma Activated Polymer Surfaces”, Surface and Interface Analysis, vol.29, pp.46-55, 2000.
[48]S. A. Kulinich, and M. Farzaneh, “Hydrophobic properties of surfaces coated with fuoroalkylsiloxane and alkylsiloxane monolayers”, Surface Science, vol.573, pp.379-390, 2004.
[49]O. Kwon, S. Tang, S. Myung, N. Lu, and H. Choi , “Surface
characteristics of polypropylene film treated by an atmospheric
pressure plasma”, Surface & Coatings Technology, vol.192, pp.1-10, 2005.
[50]汪建民, 材料分析, 中國材料學會, 1999.
[51]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, Inc., 1995.
[52]N. H. Turner, “X-ray Photoelectron and Auger Electron Spectroscopy”, Applied Spectroscopy Reviews, vol.35, pp.203-254, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 莊雅茹、楊熾能、蔡慧貞 (2006)。小螢幕動態文字呈現方式與閱讀效率之研究。教學科技與媒體,82,4-20頁。
2. 林淑芳、林麗娟(1995)。使用者介面電腦輔助學習之認知要徑。視聽教育雙月刊,3期,18-27頁。
3. 林淑芳、林麗娟(1995)。使用者介面電腦輔助學習之認知要徑。視聽教育雙月刊,3期,18-27頁。
4. 張銘勳、鄭世宏(1996)。中文筆畫數及字型於VDT顯示幕之閱讀識認性研究。工業設計,25,23-30頁。
5. 張銘勳、鄭世宏(1996)。中文筆畫數及字型於VDT顯示幕之閱讀識認性研究。工業設計,25,23-30頁。
6. 莊雅茹、楊熾能、蔡慧貞 (2006)。小螢幕動態文字呈現方式與閱讀效率之研究。教學科技與媒體,82,4-20頁。
7. 張銘勳、鄭世宏(1996)。中文筆畫數及字型於VDT顯示幕之閱讀識認性研究。工業設計,25,23-30頁。
8. 徐佳士(1973)。中文報紙版面改革之研究。新聞學研究,12,17-66頁。
9. 徐佳士(1973)。中文報紙版面改革之研究。新聞學研究,12,17-66頁。
10. 柳閩生(1986)。讀你千遍也不厭倦:版面設計與閱讀意願之探討。世界新聞專科學校學報,2,207-215頁。
11. 林淑芳、林麗娟(1995)。使用者介面電腦輔助學習之認知要徑。視聽教育雙月刊,3期,18-27頁。
12. 陳昭珍(2004)。數位出版發展現況與趨勢研究。圖書館學與資訊科學,30,107-115頁。
13. 陳俊宏、黃雅卿、曹融、邱怡仁(1997)。不同寬高比及編排方式之中文明體字易讀性和意象研究。科技學刊,4,379-395頁。
14. 陳俊宏、黃雅卿、曹融、邱怡仁(1997)。不同寬高比及編排方式之中文明體字易讀性和意象研究。科技學刊,4,379-395頁。
15. 張漢宜(2007年8月29日)。美日出版業找到數位金雞母。天下雜誌,158-159頁。