|
[1]馬寧元及李新中,刀具破損之探討,機械工業雜誌,第291期,第155-160頁,2007. [2]周國華,工具機切削技術研究,翰蘆圖書出版有限公司,第2-39至2-43頁,2017. [3]J. A. Ghani and M. Rizal ,“Monitoring Online Cutting Tool Wear using Low-Cost Technique and User-Friendly GUI,” Wear, Volume 271, Issue 9-10 pp.2619-2624, 2011. [4]廖伯瀚,端銑刀磨耗監測與壽命預測技術之研發,國立中正大學機械工程研究所學位論文,2015. [5]C.L. Yen and M.C. Lu, “Applying the Self-Organization Feature Map(SOM) Algorithm to AE-Based Tool Wear Monitoring in Micro-Cutting,” Mechanical Systems and Signal Processing, Volume 34, pp.353-366, 2013. [6]I.Yesilyurt and H.Ozturk, “Tool condition monitoring in milling using vibration analysis,” International Journal of Production Research, pp.1013-1028, 2007. [7]E.Kannatey-Asibu, J.Yum and T.H.Kim, “ Monitoring Tool Wear Using Classifier Fusion,” Mechanical System and Signal Process, Volume 85, pp. 651–661, 2017. [8]C.K.Madhusudana, H.Kumar, S.Narendranath, “Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal,” Engineering Science and Technology, an International Journal, Volume 19, Issue 3, pp. 1543-1551, 2016. [9]W. H. Hsieh, M. C. Lu and S. J. Chiou, “Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling,” The International Journal of Advanced Manufacturing Technology, Volume 61, pp. 53-61, 2012. [10]X. Lin, B. Zhou and L. Zhu, “Sequential spindle current-based tool condition monitoring with support vector classifier for milling process,” The International Journal of Advanced Manufacturing Technology, Volume 92, pp. 3319-3328, 2017. [11]P. Krishnakumar, K. Rameshkumar, K. I. Ramachandran, “Feature level fusion of vibration and acoustic emission signals in tool condition monitoring using machine learning classifiers,” International Journal of Prognostics and Health Management, pp.1-15, 2018. [12]N. Ghosh, et al., “Estimation of tool wear during CNC milling using neural network-based sensor fusion,” Mechanical Systems and Signal Processing, Volume 21, Issue 1, pp. 466-479, 2007. [13]C.Drouillet et al., “Tool life predictions in milling using spindle power with the neural network technique,” Journal of Manufacturing Processes, Volume 22, pp. 161-168, 2016. [14]C. Zhang, X. Yao, J. Zhang, J, Hong, “Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations”, Sensors, Volume 16, pp. 795, 2016. [15]江衍涵,間接式切削力與刀具壽命估測技術之研發,國立中正大學機械工程研究所學位論文,2018. [16]M. Alfaouri and K. Daqrouq, “ECG signal denoising by wavelet transform thresholding,” Amer. J. Appl. Sci., vol. 5, no. 3, pp. 276–281, 2008. [17]J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, Volume 278, pp. H2039-H2049, 2000. [18]蔡睿陞,工具機加工參數優化與工件表面粗糙度關聯性之研究,國立中正大學機械工程研究所學位論文,2016. [19]F. T. Liu, K. M. Ting and Z. H. Zhou, “Isolation forest,” Data Mining, 2008. ICDM‘08. Eighth IEEE International Conference on. [20]L. Breiman, “Bagging predictors,” Machine Learning, August 1996, Volume 24, Issue 2, pp. 123–140, 1996。 [21]F. T. Liu, K. M. Ting and Z. H. Zhou, “Isolation-based anomaly detection,” ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3. [22]https://prachimjoshi.wordpress.com/2015/07/23/bagging-and-boosting/ [23]https://www.slideshare.net/mlvlc/l14-anomaly-detection [24]T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE, Volume 78,No. 9, pp. 1464-1480, 1990. [25]J. Tian, M. H. Azarian and M. Pecht, “Anomaly Detection Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm,” Proceedings of the European Conference of the Prognostics and Health Management Society, 2014. [26]ISO 8688-2:1989(E), “Tool-life Testing in Milling, Part 2, End Milling,” 1989. [27]周開利,康耀紅,神經網絡模型及其Matlab仿真程序設計,清華大學出版社,2005。 [28]李航,統計學習方法,清華大學出版社,2012。 [29]C. Lv et al., "Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System," IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3436-3446, 2018. [30]F. Cus, U. Zuperi and M, Milfelner, “Dynamic neural network approach for tool cutting force modelling of end milling operations,” International Journal of General Systems, Vol. 35, pp. 603-618, 2006. [31]C. Metz, “Basic Principles of ROC Analysis,” Seminars in Nuclear Medcine, Volume 8, pp. 283-298, 1978. [32]J.Huang, C.X.Ling, “Using AUC and accuracy in evaluating learning algorithms,” IEEE Transactions on Knowledge and Data Engineering, Volume 17,Issue 3, 2005.
|