跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊曜維
研究生(外文):Yao-Wei Chuang
論文名稱:指數期貨價格跳動對現貨價格動態性的影響:制度轉換法
論文名稱(外文):Effects of Index Futures Price Surges on Spot Price Dynamics: A Regime-Switching Perspective
指導教授:莊忠柱莊忠柱引用關係
口試委員:林忠機陳怡妃
口試日期:2016-06-14
學位類別:碩士
校院名稱:淡江大學
系所名稱:管理科學學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:34
中文關鍵詞:期貨波動性制度轉換SWARCH
外文關鍵詞:FuturesVolatilityRegime SwitchingSWARCH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
股票與期貨市場是臺灣金融市場中的兩個主要市場,隨著金融自由化與國際化的世界潮流,現貨與期貨間的關係成為投資人熱門討論的話題。因此,本研究以1998年7月21日至2015年12月31日的臺灣發行量加權指數和臺灣指數期貨近月期為主要研究標的,利用Hamilton(1989)提出的制度轉換法(Regime-Switching Perspective)探討指數期貨價格跳動對現貨價格動態性的影響。經概似比檢定,相較於其他模型,由Hamilton and Susmel(1994)所提出的SWARCH模型最能捕捉到臺灣股票市場價格行為的特性。研究發現,期貨價格波動對現貨價格有正向影響,但期貨價格波動對現貨價格波動性並無顯著影響。此外,臺灣股票市場的價格波動性狀態持續性的機率相當高,其價格波動可能容易受全球經濟與政治因素影響。

Stock and futures markets are the two main markets in Taiwan’s financial market. With the world trend of financial liberalization and internationalization, the relations between the spot market and the future market have been becoming a hot topic of in-vestors. Therefore, the research subjects in this study are the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and Taiwan Index Futures (TX1) from July 21, 1998 to December 31, 2015. The dynamic influence of price jumps of index futures on spot prices with the regime-switching model proposed by Hamilton (1989) is explored.
Being compared to other researched models, the SWARCH model proposed by Hamilton and Susmel (1994) can best capture the price behavior of Taiwan Stock Mar-ket on the likelihood ratio test. The resultant showed that futures price volatility has a positive impact on spot prices and futures price volatility has no significant impact on spot price volatility. Besides, the probability of price volatility persistence in Taiwan stock market is very high and price fluctuations may be susceptible to global economic and political factors.


目錄 I
表目錄 II
圖目錄 III
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 7
1.3 研究流程 7
1.4 研究範圍與限制 8
第二章 研究方法 9
2.1 樣本與資料來源 9
2.2 實證模型 9
2.3 概似比檢定 12
第三章 指數期貨價格對現貨價格動態性影響的實證分析 14
3.1 基本敘述統計分析 14
3.2 實證結果分析 16
第四章 結論與建議 27
4.1 結論 27
4.2 建議 28
參考文獻 30
一、 中文文獻 30
二、 英文文獻 30


表目錄
表3-1 日報酬基本敘述統計量分析 16
表3-2 模型參數估計值彙總表 18
表3-3 研究模型的概似比檢定 19
表3-4 SWARCH模型參數估計值與檢定 20


圖目錄
圖1-1 臺灣期貨市場近五年交易量 3
圖1-2 研究流程 8
圖3-1 臺指現貨與期貨日價格時間走勢圖 14
圖3-2 臺指現貨與期貨日報酬時間走勢圖 15
圖3-3 SWARCH模型的配適報酬走勢圖和高低波動性期間圖 24
圖3-4 SWARCH配適報酬波動性 25
圖3-5 具有制度轉換的股價報酬走勢圖 26


一、 中文文獻
1.高櫻芬、呂廣仁與林建甫(2001),「變異數結構改變的SWARCH模型估計:台灣股價報酬之實證研究」,台灣金融財務季刊,1:1,21-39頁。

2.陳仕偉、葉兆龍(2003),「台灣景氣循環特性之探討:馬可夫轉換模型的應用」,台灣銀行季刊,54:1,1-27。

二、 英文文獻
1.Abhyankar, A. H. (1995). Return and volatility dynamics in the FTSE 100 stock index and stock index futures markets. Journal of Futures Markets, 15(4), 457-488.

2.Ang, A. and Timmermann, A. (2012). Regime changes and financial markets. Annual Review of Financial Economics, 4(1), 313-337.

3.Beine, M., Laurent, S. and Lecourt, C. (2003). Official central bank interventions and exchange rate volatility: Evidence from a regime-switching analysis. European Economic Review, 47(5), 891-911.

4.Bianchi, F. (2013). Regime switches, agents'' beliefs, and post-world War II US macroeconomic dynamics. Review of Economic Studies, 80(2), 463-490.

5.Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3(1), 167-179.

6.Cai, J. (1994). A markov model of switching-regime ARCH. Journal of Business & Economic Statistics, 12(3), 309-316.

7.Canarella, G. and Pollard, S. K. (2007). A switching ARCH (SWARCH) model of stock market volatility: some evidence from Latin America. International Review of Economics, 54(4), 445-462.

8.Canarella, G., Fang, W. S., Miller, S. M. and Pollard, S. K. (2010). Is the great moderation ending? - UK and US evidence. Modern Economy, 1(1), 17-42.

9.Chan, K. (1992). A further analysis of the lead-lag relationship between the cash market and stock index futures market. Review of Financial Studies, 5(1), 123-152.

10.Cheung, Y. W. and Erlandsson, U. G. (2005). Exchange rates and markov switching dynamics. Journal of Business & Economic Statistic, 23, 314-320.

11.Cong, R. G., Wei, Y. M., Jiao, J. L. and Fan, Y. (2008). Relationships between oil price shocks and stock market: an empirical analysis from China. Energy Policy, 36(9), 3544-3553.

12.Ertugrul, H. M. and Ozturk, H. (2013). The drivers of credit default swap prices: evidence from selected emerging market countries. Emerging Markets Finance and Trade, 49(5), 228-249.

13.Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 38(1),34-105.

14.Fleming, J., Ostdiek, B. and Whaley, R. E. (1996). Trading costs and the relative rates of price discovery in stock, futures, and option markets. Journal of Futures Markets, 16(4), 353-387.

15.Grossman, S. (1989). The informational role of prices. MIT Press Books, 1.

16.Gulen, H., Xing, Y. and Zhang, L. (2011). Value versus growth: time‐varying expected stock returns. Financial Management, 40(2), 381-407.

17.Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society, 357-384.

18.Hamilton, J. D. and Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1), 307-333.

19.Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. Journal of Monetary Economics, 38(2), 215-220.

20.Jammazi, R. and Nguyen, D. K. (2015). Responses of international stock markets to oil price surges: a regime-switching perspective. Applied Economics, 47(41), 4408-4422.

21.Kang, J., Lee, C. J. and Lee, S. (2006). An empirical investigation of the lead-lag relations of returns and volatilities among the KOSPI200 spot, futures and options markets and their explanations. Journal of Emerging Market Finance, 5(3), 235-261.

22.Kawaller, I. G., Koch, P. D. and Koch, T. W. (1987). The temporal price relationship between S&P 500 futures and the S&P 500 index. Journal of Finance, 42(5), 1309-1329.
23.Lamoureux, C. G. and Lastrapes, W. D. (1990). Heteroskedasticity in stock return data: volume versus GARCH effects. Journal of Finance, 45(1), 221-229.

24.Li, M. Y. L. and Lin, H. W. W. (2003). Examining the volatility of Taiwan stock index returns via a three-volatility-regime markov-switching ARCH model. Review of Quantitative Finance and Accounting, 21(2), 123-139.

25.Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 294-419.

26.Morgan, I. G. (1976). Stock prices and heteroscedasticity. Journal of Business, 496-508.

27.Park, J. and Ratti, R. A. (2008). Oil price shocks and stock markets in the US and 13 European countries. Energy Economics, 30(5), 2587-2608.

28.Pati, P. C. and Rajib, P. (2011). Intraday return dynamics and volatility spillovers between NSE S&P CNX Nifty stock index and stock index futures. Applied Economics Letters, 18(6), 567-574.

29.Ramchand, L. and Susmel, R. (1998). Volatility and cross correlation across major stock markets. Journal of Empirical Finance, 5(4), 397-416.

30.Scholtens, B. and Yurtsever, C. (2012). Oil price shocks and European industries. Energy Economics, 34(4), 1187-1195.

31.Schwarz, T. V. and Laatsch, F. E. (1991). Dynamic efficiency and price leadership in stock index cash and futures markets. Journal of Futures Markets, 11(6), 669-683.

32.Smith, D. R. (2002). Markov-switching and stochastic volatility diffusion models of short-term interest rates. Journal of Business & Economic Statistics, 20(2), 183-197.

33.Subrahmanyam, A. (1991). A theory of trading in stock index futures. Review of Financial Studies, 4(1), 17-51.

34.Theissen, E. (2012). Price discovery in spot and futures markets: A reconsideration. European Journal of Finance, 18(10), 969-987.

35.Tsai, I. C., Chen, M. C. and Ma, T. (2010). Modelling house price volatility states in the UK by switching ARCH models. Applied Economics, 42(9), 1145-1153.

36.Tse, Y. K. (1995). Lead‐lag relationship between spot index and futures price of the nikkei stock average. Journal of Forecasting, 14(7), 553-563.

37.Ye, W., Zhu, Y., Wu, Y. and Miao, B. (2016). Markov regime-switching quantile regression models and financial contagion detection. Insurance: Mathematics and Economics, 67, 21-26.

38.Zhu, X. and Zhu, J. (2013). Predicting stock returns: A regime-switching combination approach and economic links. Journal of Banking & Finance, 37(11), 4120-4133.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊