跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡柏戎
研究生(外文):Bo-Rong Cai
論文名稱:CMOS參考電壓設計與應用
論文名稱(外文):Design And application Of CMOS Reference Voltage
指導教授:劉偉行劉偉行引用關係
指導教授(外文):Wei-Hsing Liu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:溫度係數差動模式疊接式電流鏡參考電壓
外文關鍵詞:temperature coefficientdifferential modecascodecurrent mirrorreference voltage
相關次數:
  • 被引用被引用:3
  • 點閱點閱:979
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種具有疊接式架構的差動輸出參考電壓電路。本電路是利用BJT所具有的的正/負溫度係數特性參數互相補償,以實現一個具有零溫度係數的參考電壓電路。電路利用兩種架構去模擬驗證,並比較兩種電路架構之優缺點;相較於已知電路,本論文提出的電路具有架構簡單、較少晶片面積、不須使用運算放大器等優點。
本論文除了詳細敘述工作原理以外,並使用HSPICE及LAKER電路模擬軟體以0.35微米製程進行佈局前和佈局後模擬,電路供應電壓範圍分別是3.3V與5V,溫度變化範圍則為-20°C-120°C。根據模擬結果,雙疊接式電路架構可以有效提升電路的PSRR值;當供應電壓是3.3V,溫度為25°C時,使用一般疊接式電路架構,輸出電壓約為426.2mv,輸出電壓變化量為1.37mv,消耗功率為0.5149mW,PSRR約為-27.52dB。當供應電壓是5V,溫度為25°C時,而使用雙疊接式電路架構輸出電壓約500.27mv,輸出電壓變化量為1.0236mv,消耗功率為0.96502mW,PSRR約為-45dB;本論文電路模擬結果與理論推導相符合,可證明電路的可行性。論文提出之差動式參考電壓電路可適用於汽車電子裝置,以及各種數位和類比電路之中。


In this thesis, a differential-mode reference voltage circuit with cascode architecture has been proposed. The design principle is using both the positive and the negative temperature coefficient parameters in BJT to compensate each other, and then a zero temperature coefficient output reference voltage can be achieved. Circuit simulations has used two different circuit architectures to realize the reference voltage, and both the advantages and disadvantages have been discussed. As compared with the existed differential mode reference voltage circuits, the proposed circuits benefits from simpler circuit architecture, less chip area, and also they don''t need any operational amplifier .
Detailed design principle has been disclosed in this thesis, also the HSPICE and LAKER simulation programs with 0.35-μm process parameters have been used to perform the pre-layout and post-layout simulation. The supply voltages of the proposed circuits are 3.3V and 5V, respectively. The test temperature ranges from -20°C to 120°C. According to the simulation results, the double-cascode architecture can enhance the PSRR. When the supply voltage is 3.3V and the temperature is 25°C, the output voltage of the proposed cascode architecture reference voltage circuit is 426.2mv, the maximum output voltage variation is 1.37mv, the power dissipation is 0.5149mW, and the corresponding PSRR is -27.52dB. As the supply voltage is 5V and the temperature is 25°C, the output voltage of the proposed double-cascode architecture reference voltage circuit is 500.27mv, the maximum output voltage variation is only 1.0236mv, the power dissipation is 0.96502mW, and the corresponding PSRR is -45dB. All the simulation results are consistent with the theoretic analysis. The proposed circuits can be applied to vehicle electronic devices design and other digital and analog circuits.


目錄
摘要.................................... i
Abstract................................ii
誌謝.....................................iv
目錄.....................................v
符號說明..................................xii
第一章 緒論...............................1
1.1研究背景與動機..........................1
1.2設計流程...............................2
1.3研究重點...............................4
1.4論文架構...............................4
第二章 參考電壓原理 .........................5
2.1參考電壓介紹與原理.......................5
2.2電流源分析..............................6
2.3參考電壓電路架構.........................8
2.3.1二極體穩壓電路.........................8
2.3.2 MOSFET參考電壓電路...................10
2.3.3 BJT參考電壓電路......................12
2.4 PTAT 電流電路 .........................18
第三章 改良式CMOS參考電壓電路.................22
3.1改良式CMOS單端輸出參考電壓/電流電路.........22
3.1.1 單端輸出參考電壓電路工作原理.............23
3.1.2 單端輸出參考電流電路架構與設計...........24
3.2 差動模式CMOS參考電壓電路.................26
3.2.1 電路工作原理 .........................26
3.3 改良式差動模式CMOS參考電壓電路............28
3.3.1 改良式差動輸出參考電壓電路之一...........28
3.3.2 改良式差動輸出參考電壓電路之二...........31
第四章 模擬與量測結果........................36
4.1設計流程................................36
4.2電路模擬結果.............................38
4.2.1 單端輸出參考電壓電路....................38
4.2.2 差動模式輸出參考電壓電路.................45
4.2.3 改良式差動輸出參考電壓電路...............52
4.2.4 改良式疊接差動輸出參考電壓電路............60
4.3 電路晶片實現與晶片量測結果.................68
4.3.1 單端輸出參考電壓電路....................69
4.3.2 差動模式輸出參考電壓電路.................73
4.3.3 改良式差動模式輸出參考電壓電路............77
4.3.3 改良式疊接差動輸出參考電壓電路............81
第五章 結論.................................85
參考文獻....................................86
Extended Abstract.........................89
簡歷(CV)...................................92


[1]Neil H.E Weste, David Harris,柯鴻禧、黃琪聰(譯),“COMS積體電路設計概論”台灣培生教育出版股份有限公司,2007。
[2]謝永瑞,“VLSI概論(修訂四版)”全華科技圖書股份有限公司,2008。
[3]高德遠、康繼昌,“VLSI-系統和電路的設計原理”儒林圖書有限公司,1992。
[4]D. L. Butler and R. Jacob Baker,“Low-Voltage Bandgap Reference Design Utilizing Schottky Diodes,”Circuits and Systems, 2005. 48th Midwest Symposium,vol.2,pp.1794
-1797.
[5]S. K. Wadhwa,“A Low Voltage CMOS Bandgap Reference circuit,” IEEE International Symposium on Circuits and Systems, 2008. ISCAS 2008,pp.2693-2696,2008.
[6]L.Magnelli , F. Crupi , P. Corsonello,C.Pace and G. Iannaccone,“A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference,”IEEE Journal of Solid-State Circuits,vol 46,pp.465-474,2011.
[7]K. R. Francisco and J. A. Hora ,“Very Low Bandgap Voltage Reference with High PSRR Enhancement Stage Implemented in 90nm CMOS Process Technology for LDO Application,”2012 IEEE International Conference on Electronics Design Systems and Applications (ICEDSA), pp.216-220, 2012.
[8]Zhang Shuo , Wang Zongmin ,Zhou Liang , Feng Wenxiao and Ding Yang,“A high-PSRR bandgap voltage reference with temperature curvature compensation used for pipeline ADC,”2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp.1-2, 2013.
[9]D. F. Hilbiber,“A New Developments in IC Voltage Regulators,”IEEE International
Solid-State Circuits Conference,vol.VII,pp.32-33,Feb.1964.
[10]R.J. Widlar,“New Developments in IC Voltage Regulators,”IEEE International Solid-State Circuits Conference,vol.XIII,pp.158-159,Fed.1970.
[11]P.E. Allen and D.R. Holberg,“CMOS Analog Circuit Design,”Qxford University Press,Second Edition,2002.
[12]陳郡豪,“工作於次臨界區本體堆動之低電壓低電流微型運算放大器”,國立聯合大學電子工程研究所碩士論文,2006。
[13]廖家正,“CMOS參考電壓設計”,國立虎尾科技大學電子工程系研究所碩士論文,2013年,7月。
[14]施家豪,“低功率參考電壓設計”,國立虎尾科技大學電子工程系研究所碩士論文,2013年,7月。
[15]Chia-Wei Chang,Tien-Yu Lo,Chia-Min Chen,Kuo-His Wu,and Chung-Chih Hung,“A Low-Power CMOS Voltage Reference Circuit Based On Subthreshold Operation,”2007.IEEE International Symposium on Circuits and Systems,pp.3844-3847.
[16]P. R. Gray, P. J. Hurst, H. Lewis, and R. G. Meter,“Analysis and design of analog integrated circuits,”New York,John Wiley&Sons,Inc.5th edition,2009.
[17]M.K. Adimulam and K.K. Movva,“A Low Power CMOS Current Mode Bandgap
Reference Circuit with Low Temperature Coefficient of Output Voltage,”2012 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia),pp.144-149, 2012.
[18]J. Navarro, E. Ishibe,“A Simple CMOS Bandgap Reference Circuit with Sub-1-V Operation,”2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp.2289-2292,2011.
[19]B. Razavi,“Design of Analogue CMOS Integrated Circuits,” McCraw-Hill Companies Inc, Boston, 2001.MA.
[20]Luiz L. G. Vermaas, Carlos R. T. de Mori, Robson L. Moreno, Adriano M. Pereira,“A Bandgap Voltage Reference Using Digital CMOS Process,” 1998 IEEE International Conference on Electronics, vol.2,pp. 303 – 306, Lisboa, 1998.September.
[21]江宗殷,“溫度補償CMOS電壓參考電路”,國立清華大學工程與系統科學研究所 碩士論文,2005。
[22]P. Malcovati, F. Maloberti, M. Pruzzi and C. Fiocchi,“Curvature Compensated BiCMOS Bandgap with 1V Supply Voltage”Proceedings of the 26rd European Solid-State Circuits Conference, 2000. ESSCIRC ''00,pp.7-10,2000.
[23]Ge Tao, Fu Xiansong, Niu Pingjuan, Yang Guanghua, and Gao Tiecheng, “High-performance floating output bandgap circuit,” 2010 2nd International Conference on Signal Processing Systems, vol.3, pp. 224 – 226, Dalian, 2010.July.
[24]Marco Ferro, Franco Salerno, and Rinaldo Castello,“A Floating CMOS Bandgap Voltage Reference for Differential Applications,” Fourteenth European Solid-State Circuits Conference, pp.219 – 222, Manchester, UK,1988.September.
[25]Todd L. Brook, and Alan L. Westwick,“A Low-Power Differential CMOS Bandgap Reference,” 1994 IEEE International Solid-State Circuits Conference, pp.248 – 249, San Francisco, CA, USA, 1994.February.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top