跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳詩盈
研究生(外文):Shih-Ying
論文名稱:BDNF-TrkB訊息抑制微小膠細胞活化:在老化及運動中的結抗效果
論文名稱(外文):BDNF-TrkB signaling inhibits microglial activation: countering effect of aging and exercise
指導教授:郭余民郭余民引用關係
指導教授(外文):Yu-Min Kuo
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:80
中文關鍵詞:老化多巴胺神經元微小膠細胞活化腦源性神經滋養因子BDNF運動
外文關鍵詞:AgingDopaminergic neuronMicroglia activationBDNFExercise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
老化、發炎和降低的腦源性神經滋養因子(BDNF)與黑質腦區中多巴胺神經元減少有關。然而,因果關係目前還不是很清楚。我們發現在老化老鼠中抑制微小膠細胞活化可減少老化相關多巴胺神經減少。BDNF和BDNF的接受器TrkB表現量與多巴胺神經元的數目成正比,但與微小膠細胞活化程度成反比。BDNF有效減弱脂多醣引起的微小膠細胞活化,而給予微小膠細胞shTrkB的處理後會抑制由BDNF引起的抗微小膠細胞活化。施予老鼠中強度的運動訓練,上調BDNF和TrkB的表現量,能抑制與老化相關的微小膠細胞活化和多巴胺神經元減少。給予老鼠顱內注射shTrkB抑制經由運動對抗微小膠細胞活化以及運動的神經保護效果,總結,我們發現多巴胺神經元、BDNF、微小膠細胞三者間互相調節的平衡關係。老化破壞三者間的平衡,有利於微小膠細胞活化。長期接受運動訓練的老鼠會上調BDNF和TrkB的表現並抑制老化相關的微小膠細胞活化及多巴胺神經元死亡。
Aging, inflammation, and reduced brain-derived neurotrophic factor (BDNF) are associated with dopaminergic neuron loss in the substantia nigra. However, the causal relationships are unclear. We found age-related dopaminergic neuron loss lower in mice with inhibited microglial activation. BDNF and BDNF-receptor TrkB levels were positively correlated with the number of dopaminergic neurons and negatively with the degree of microglial activation. Lipopolysaccharide-induced microglial activation was attenuated by BDNF, while BDNF-induced antimicroglial activation was inhibited by shTrkB treatment. In mice forced to exercise, which upregulates BDNF and TrkB, age-related microglial activation and dopaminergic neuron loss were inhibited. Microglial activation was higher and exercise-induced protection lower in mice treated with shTrkB. In conclusion, our findings suggest a three-way reciprocal regulation among dopaminergic neurons, BDNF, and microglia. Aging disrupts the balances among them and favors microglial activation. BDNF-TrkB signaling was upregulated and age-related microglial activation and dopaminergic neuron death were inhibited in mice forced to undergo long-term exercise.
Abstract in Chinese......................................I
Abstract................................................II
Acknowledgement........................................III
Table of Contents.......................................IV
List of Figures........................................VII
Abbreviations...........................................IX
Chapter 1: Introduction..................................1
1.1. Parkinson’s disease.................................1
1.2. PD and Inflammation.................................1
1.3. The role of resting or activated microglia in the
brain...............................................2
1.4. Microglia activation and DA neuron damage...........2
1.5. Aging and inflammation..............................3
1.6. Brain-derived neurotrophic factor and DA neuron
survival............................................4
1.7. Brain-derived neurotrophic factor and inflammation..5
1.8. Exercise prevents neuron loss and up-regulating
BDNF................................................6
1.9. Objectives and hypothesis...........................7
1.10.Experimental designs................................8
Chapter 2: Materials and Methods........................10
2.1. Animals............................................10
2.2. Beam traversal test................................10
2.3. Rotarod test.......................................11
2.4. Grasping strength test.............................11
2.5. Ki20227 and LPS treatment..........................11
2.6. Ibuprofen supplement...............................12
2.7. Treadmill running (TR) training....................12
2.8. Wheel running (WR) procedure.......................13
2.9. Preparation of TrkB shRNA and gene-expressing
lentivirus.........................................13
2.10.Delivering shTrkB to the brain.....................14
2.11.BDNF supplement and LPS treatment..................15
2.12.BV2 microglial cell culture........................15
2.13.Mesencephalic primary microglial cell culture......16
2.14.TrkB expression knockdown in BV2 cells.............17
2.15.TH-positive neuron culture.........................17
2.16.TH neuron toxicity assay...........................18
2.17.Preparing brain tissue.............................18
2.18.Immunohistochemistry...............................18
2.19.Counting cells.....................................19
2.20.Quantifying microglial area........................20
2.21.Dual immunofluorescenct staining and confocal
microscopy.........................................20
2.22.Transmission electron microscopy...................21
2.23.Quantifying TNF-a and IL-6 in the SN and in the
conditioned medium of microglial cells.............22
2.24.Western blotting...................................22
2.25.Flow Cytometry.....................................23
2.26.Statistical analysis...............................24
Chapter 3: Results......................................25
3.1. Age-related DA neuron loss, motor dysfunction, and
microglial activation..............................25

3.2. LPS-induced and Age-related DA neuron loss was lower
in mice in which microglial activation had been
inhibited..........................................27
3.3. Age-related downregulation of BDNF and TrkB........28
3.4. Microglial activation was inhibited by BDNF........28
3.5. Age-related DA neuron loss, motor deficit, microglial
activation, and downregulation of BDNF and TrkB were
ameliorated in running mice........................30
3.6. Effect of termination of treadmill running (TR) or
long-term wheel running (WR) on exercise-induced
neuroprotection and anti-microglia activation......31
3.7. BDNF-TrkB signaling is involved in TR-induced
neuroprotection and anti-microglial activation.....32
Chapter 4: Discussion...................................33
Chapter 5: Conclusion...................................38
Chapter 6: References...................................39
Chapter 7: Figures......................................48
Chapter 8: Publications.................................80
1.Collier, T.J., Kanaan, N.M. & Kordower, J.H. Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat. Rev. Neurosci. 12, 359-366 (2011).
2.Gao, H.M., et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285-1297 (2002).
3.Jenner, P. Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci. 24, 245-247 (2001).
4.Van Den Eeden, S.K., et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015-1022 (2003).
5.Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244-250 (2007).
6.Schapira, A.H. & Gegg, M. Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinsons Dis. 2011, 159160 (2011).
7.Watfa, G., et al. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J. Nutr. Health Aging 15, 277-281 (2011).
8.Hirsch, E.C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382-397 (2009).
9.Mogi, M., et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147-150 (1994).
10.McGeer, P.L., Itagaki, S., Boyes, B.E. & McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291 (1988).
11.Ouchi, Y., et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168-175 (2005).
12.Hanisch, U.K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387-1394 (2007).
13.Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318 (2005).
14.Ransohoff, R.M. & Perry, V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119-145 (2009).
15.Gibbons, H.M. & Dragunow, M. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res. 1084, 1-15 (2006).
16.Qin, L., et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462 (2007).
17.Qin, L., et al. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52, 78-84 (2005).
18.Wang, F., et al. Aspirin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity in primary midbrain cultures. J. Mol. Neurosci. 46, 153-161 (2012).
19.Sui, Y., Stanic, D., Tomas, D., Jarrott, B. & Horne, M.K. Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta. Neurosci. Lett. 460, 121-125 (2009).
20.Qin, L., et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415-1421 (2004).
21.Dilger, R.N. & Johnson, R.W. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J. Leukoc. Biol. 84, 932-939 (2008).
22.Lee, C.K., Weindruch, R. & Prolla, T.A. Gene-expression profile of the ageing brain in mice. Nature Genet. 25, 294-297 (2000).
23.Lu, T., et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883-891 (2004).
24.Choi, D.Y., Zhang, J. & Bing, G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol. Aging 31, 1649-1653 (2010).
25.Sheffield, L.G. & Berman, N.E. Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol. Aging 19, 47-55 (1998).
26.Taylor, S., et al. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp. Eye Res. 92, 338-343 (2011).
27.Wang, X.J., et al. Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radic. Biol. Med. 50, 1094-1106 (2011).
28.Bas, J., et al. Lymphocyte populations in Parkinson's disease and in rat models of parkinsonism. J. Neuroimmunol. 113, 146-152 (2001).
29.Perry, V.H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun. 18, 407-413 (2004).
30.Zeevi, N., Pachter, J., McCullough, L.D., Wolfson, L. & Kuchel, G.A. The blood-brain barrier: geriatric relevance of a critical brain-body interface. J. Am. Geriatr. Soc. 58, 1749-1757 (2010).
31.Hyman, C., et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230-232 (1991).
32.Pillai, A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 16, 183-193 (2008).
33.Numakawa, T., et al. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 25, 237-258 (2010).
34.Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413-6419 (2010).
35.Spenger, C., et al. Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50-63 (1995).
36.Zhou, J., Bradford, H.F. & Stern, G.M. The response of human and rat fetal ventral mesencephalon in culture to the brain-derived neurotrophic factor treatment. Brain Res. 656, 147-156 (1994).
37.Howells, D.W., et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp. Neurol. 166, 127-135 (2000).
38.Parain, K., et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 10, 557-561 (1999).
39.Wu, S.Y., et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135-146 (2011).
40.Zhao, L., et al. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson's disease. Physiol. Res. 63, 649-657 (2014).
41.Jiang, Y., et al. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172, 398-405 (2011).
42.Jiang, Y., et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat. Inflamm. 2010, 372423 (2010).
43.Makar, T.K., et al. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J. Neurol. Sci. 270, 70-76 (2008).
44.Joosten, E.A. & Houweling, D.A. Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15, 1163-1166 (2004).
45.Bovolenta, R., et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J. Neuroinflamm. 7, 81-86 (2010).
46.Cotman, C.W. & Berchtold, N.C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301 (2002).
47.Dibble, L.E., Hale, T.F., Marcus, R.L., Gerber, J.P. & LaStayo, P.C. High intensity eccentric resistance training decreases bradykinesia and improves Quality Of Life in persons with Parkinson's disease: a preliminary study. Parkinsonism Relat. Disord. 15, 752-757 (2009).
48.Petzinger, G.M., et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 27, 5291-5300 (2007).
49.Fisher, B.E., et al. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J. Neurosci. Res. 77, 378-390 (2004).
50.Lau, Y.S., Patki, G., Das-Panja, K., Le, W.D. & Ahmad, S.O. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur. J. Neurosci. 33, 1264-1274 (2011).
51.Fleming, S.M., et al. Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142, 1245-1253 (2006).
52.Elmore, M.R., et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380-397 (2014).
53.Kim, C., et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).
54.Liu, Z., Chen, H.Q., Huang, Y., Qiu, Y.H. & Peng, Y.P. Transforming growth factor-beta1 acts via TbetaR-I on microglia to protect against MPP-induced dopaminergic neuronal loss. Brain Behav. Immun. 51, 131-143 (2015).
55.Wu, Z. & Nakanishi, H. Phosphatidylserine-containing liposomes: potential pharmacological interventions against inflammatory and immune diseases through the production of prostaglandin E(2) after uptake by myeloid derived phagocytes. Arch. Immunol. Ther. Exp. 59, 195-201 (2011).
56.Xie, H.R., Hu, L.S. & Li, G.Y. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin. Med. J. 123, 1086-1092 (2010).
57.Hancock, M.B. Visualization of peptide-immunoreactive processes on serotonin-immunoreactive cells using two-color immunoperoxidase staining. J. Histochem. Cytochem. 32, 311-314 (1984).
58.Baquet, Z.C., Williams, D., Brody, J. & Smeyne, R.J. A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161, 1082-1090 (2009).
59.Yang, T.T., et al. Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct. Funct. 218, 1051-1060 (2013).
60.de Haas, A.H., Boddeke, H.W., Brouwer, N. & Biber, K. Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 55, 1374-1384 (2007).
61.Ollivier, V., Parry, G.C., Cobb, R.R., de Prost, D. & Mackman, N. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J. Biol. Chem. 271, 20828-20835 (1996).
62.Parry, G.C. & Mackman, N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J. Immunol. 159, 5450-5456 (1997).
63.Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170-181 (2010).
64.Brunk, U.T. & Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33, 611-619 (2002).
65.Ji, K.-A., et al. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 56, 1039-1047 (2008).
66.Lucin, K.M. & Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110-122 (2009).
67.D'Mello, C., Le, T. & Swain, M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089-2102 (2009).
68.Mogi, M., et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett. 270, 45-48 (1999).
69.Croll, S.D., Ip, N.Y., Lindsay, R.M. & Wiegand, S.J. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res. 812, 200-208 (1998).
70.Barrientos, R.M., et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121, 847-853 (2003).
71.Lapchak, P.A., Araujo, D.M. & Hefti, F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53, 297-301 (1993).
72.Xu, Q., et al. Physical activities and future risk of Parkinson disease. Neurology 75, 341-348 (2010).
73.Nieman, D.C. Current perspective on exercise immunology. Curr. Sport. Med. Rep. 2, 239-242 (2003).
74.Quante, T., et al. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1. Am. J. Respir. Cell Mol. Biol. 39, 208-217 (2008).
75.Chen, M.F., Chen, H.I. & Jen, C.J. Exercise training upregulates macrophage MKP-1 and affects immune responses in mice. Med. Sci. Sports Exerc. 42, 2173-2179 (2010).
76.Handschin, C. & Spiegelman, B.M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454, 463-469 (2008).
77.Starkie, R., Ostrowski, S.R., Jauffred, S., Febbraio, M. & Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. Faseb J. 17, 884-886 (2003).
78.Horsburgh, S., Robson-Ansley, P., Adams, R. & Smith, C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc. Immunol. Rev. 21, 26-41 (2015).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊