|
1.Collier, T.J., Kanaan, N.M. & Kordower, J.H. Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat. Rev. Neurosci. 12, 359-366 (2011). 2.Gao, H.M., et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285-1297 (2002). 3.Jenner, P. Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci. 24, 245-247 (2001). 4.Van Den Eeden, S.K., et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015-1022 (2003). 5.Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244-250 (2007). 6.Schapira, A.H. & Gegg, M. Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinsons Dis. 2011, 159160 (2011). 7.Watfa, G., et al. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J. Nutr. Health Aging 15, 277-281 (2011). 8.Hirsch, E.C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382-397 (2009). 9.Mogi, M., et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147-150 (1994). 10.McGeer, P.L., Itagaki, S., Boyes, B.E. & McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291 (1988). 11.Ouchi, Y., et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168-175 (2005). 12.Hanisch, U.K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387-1394 (2007). 13.Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318 (2005). 14.Ransohoff, R.M. & Perry, V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119-145 (2009). 15.Gibbons, H.M. & Dragunow, M. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res. 1084, 1-15 (2006). 16.Qin, L., et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462 (2007). 17.Qin, L., et al. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52, 78-84 (2005). 18.Wang, F., et al. Aspirin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity in primary midbrain cultures. J. Mol. Neurosci. 46, 153-161 (2012). 19.Sui, Y., Stanic, D., Tomas, D., Jarrott, B. & Horne, M.K. Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta. Neurosci. Lett. 460, 121-125 (2009). 20.Qin, L., et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415-1421 (2004). 21.Dilger, R.N. & Johnson, R.W. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J. Leukoc. Biol. 84, 932-939 (2008). 22.Lee, C.K., Weindruch, R. & Prolla, T.A. Gene-expression profile of the ageing brain in mice. Nature Genet. 25, 294-297 (2000). 23.Lu, T., et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883-891 (2004). 24.Choi, D.Y., Zhang, J. & Bing, G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol. Aging 31, 1649-1653 (2010). 25.Sheffield, L.G. & Berman, N.E. Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol. Aging 19, 47-55 (1998). 26.Taylor, S., et al. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp. Eye Res. 92, 338-343 (2011). 27.Wang, X.J., et al. Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radic. Biol. Med. 50, 1094-1106 (2011). 28.Bas, J., et al. Lymphocyte populations in Parkinson's disease and in rat models of parkinsonism. J. Neuroimmunol. 113, 146-152 (2001). 29.Perry, V.H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun. 18, 407-413 (2004). 30.Zeevi, N., Pachter, J., McCullough, L.D., Wolfson, L. & Kuchel, G.A. The blood-brain barrier: geriatric relevance of a critical brain-body interface. J. Am. Geriatr. Soc. 58, 1749-1757 (2010). 31.Hyman, C., et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230-232 (1991). 32.Pillai, A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 16, 183-193 (2008). 33.Numakawa, T., et al. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 25, 237-258 (2010). 34.Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413-6419 (2010). 35.Spenger, C., et al. Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50-63 (1995). 36.Zhou, J., Bradford, H.F. & Stern, G.M. The response of human and rat fetal ventral mesencephalon in culture to the brain-derived neurotrophic factor treatment. Brain Res. 656, 147-156 (1994). 37.Howells, D.W., et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp. Neurol. 166, 127-135 (2000). 38.Parain, K., et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 10, 557-561 (1999). 39.Wu, S.Y., et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135-146 (2011). 40.Zhao, L., et al. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson's disease. Physiol. Res. 63, 649-657 (2014). 41.Jiang, Y., et al. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172, 398-405 (2011). 42.Jiang, Y., et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat. Inflamm. 2010, 372423 (2010). 43.Makar, T.K., et al. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J. Neurol. Sci. 270, 70-76 (2008). 44.Joosten, E.A. & Houweling, D.A. Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15, 1163-1166 (2004). 45.Bovolenta, R., et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J. Neuroinflamm. 7, 81-86 (2010). 46.Cotman, C.W. & Berchtold, N.C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301 (2002). 47.Dibble, L.E., Hale, T.F., Marcus, R.L., Gerber, J.P. & LaStayo, P.C. High intensity eccentric resistance training decreases bradykinesia and improves Quality Of Life in persons with Parkinson's disease: a preliminary study. Parkinsonism Relat. Disord. 15, 752-757 (2009). 48.Petzinger, G.M., et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 27, 5291-5300 (2007). 49.Fisher, B.E., et al. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J. Neurosci. Res. 77, 378-390 (2004). 50.Lau, Y.S., Patki, G., Das-Panja, K., Le, W.D. & Ahmad, S.O. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur. J. Neurosci. 33, 1264-1274 (2011). 51.Fleming, S.M., et al. Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142, 1245-1253 (2006). 52.Elmore, M.R., et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380-397 (2014). 53.Kim, C., et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013). 54.Liu, Z., Chen, H.Q., Huang, Y., Qiu, Y.H. & Peng, Y.P. Transforming growth factor-beta1 acts via TbetaR-I on microglia to protect against MPP-induced dopaminergic neuronal loss. Brain Behav. Immun. 51, 131-143 (2015). 55.Wu, Z. & Nakanishi, H. Phosphatidylserine-containing liposomes: potential pharmacological interventions against inflammatory and immune diseases through the production of prostaglandin E(2) after uptake by myeloid derived phagocytes. Arch. Immunol. Ther. Exp. 59, 195-201 (2011). 56.Xie, H.R., Hu, L.S. & Li, G.Y. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin. Med. J. 123, 1086-1092 (2010). 57.Hancock, M.B. Visualization of peptide-immunoreactive processes on serotonin-immunoreactive cells using two-color immunoperoxidase staining. J. Histochem. Cytochem. 32, 311-314 (1984). 58.Baquet, Z.C., Williams, D., Brody, J. & Smeyne, R.J. A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161, 1082-1090 (2009). 59.Yang, T.T., et al. Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct. Funct. 218, 1051-1060 (2013). 60.de Haas, A.H., Boddeke, H.W., Brouwer, N. & Biber, K. Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 55, 1374-1384 (2007). 61.Ollivier, V., Parry, G.C., Cobb, R.R., de Prost, D. & Mackman, N. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J. Biol. Chem. 271, 20828-20835 (1996). 62.Parry, G.C. & Mackman, N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J. Immunol. 159, 5450-5456 (1997). 63.Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170-181 (2010). 64.Brunk, U.T. & Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33, 611-619 (2002). 65.Ji, K.-A., et al. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 56, 1039-1047 (2008). 66.Lucin, K.M. & Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110-122 (2009). 67.D'Mello, C., Le, T. & Swain, M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089-2102 (2009). 68.Mogi, M., et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett. 270, 45-48 (1999). 69.Croll, S.D., Ip, N.Y., Lindsay, R.M. & Wiegand, S.J. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res. 812, 200-208 (1998). 70.Barrientos, R.M., et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121, 847-853 (2003). 71.Lapchak, P.A., Araujo, D.M. & Hefti, F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53, 297-301 (1993). 72.Xu, Q., et al. Physical activities and future risk of Parkinson disease. Neurology 75, 341-348 (2010). 73.Nieman, D.C. Current perspective on exercise immunology. Curr. Sport. Med. Rep. 2, 239-242 (2003). 74.Quante, T., et al. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1. Am. J. Respir. Cell Mol. Biol. 39, 208-217 (2008). 75.Chen, M.F., Chen, H.I. & Jen, C.J. Exercise training upregulates macrophage MKP-1 and affects immune responses in mice. Med. Sci. Sports Exerc. 42, 2173-2179 (2010). 76.Handschin, C. & Spiegelman, B.M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454, 463-469 (2008). 77.Starkie, R., Ostrowski, S.R., Jauffred, S., Febbraio, M. & Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. Faseb J. 17, 884-886 (2003). 78.Horsburgh, S., Robson-Ansley, P., Adams, R. & Smith, C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc. Immunol. Rev. 21, 26-41 (2015).
|