|
[1]Asadzadeh, L. (2016). A parallel artificial bee colony algorithm for the job shop scheduling problem with a dynamic migration strategy. Computers & Industrial Engineering, 102, 359-367.1 [2]Bozorgirad, M. A., and Logendran, R. (2012). Sequence-dependent group scheduling problem on unrelated-parallel machines. Expert Systems with Applications, 39(10): 9021-9030. [3]Cao, D., Chen, M., and Wan, G. (2005). Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Computers & operations research, 32(8): 1995-2012. [4]Caniyilmaz, E., Benli, B., & Ilkay, M. S. (2015). An artificial bee colony algorithm approach for unrelated parallel machine scheduling with processing set restrictions, job sequence-dependent setup times, and due date. The International Journal of Advanced Manufacturing Technology, 77(9-12), 2105-2115. [5]Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102. [6]Dugardin, F., Yalaoui, F., & Amodeo, L. (2010). New multi-objective method to solve reentrant hybrid flow shop scheduling problem. European Journal of Operational Research,203(1), 22-31. [7]Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. [8]Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey.Annals of discrete mathematics, 5, 287-326. [9]Gupta, J. N., and Ruiz-Torres, A. J. (2005). Generating efficient schedules for identical parallel machines involving flow-time and tardy jobs. European Journal of Operational Research, 167(3): 679-695. [10]Ho, J. C., & Chang, Y. L. (1995). Minimizing the number of tardy jobs for m parallel machines. European Journal of Operational Research,84(2), 343-355. [11]Hancer, E., Xue, B., Zhang, M., Karaboga, D., & Akay, B. (2018). Pareto front feature selection based on artificial bee colony optimization. Information Sciences, 422, 462-479. [12]Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. [13]Karaboga, D., & Basturk, B. (2007). A powerful and efficient algo-rithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459-471. [14]Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computa-tion, 214(1), 108-132. [15]Kellegöz, T., Toklu, B., & Wilson, J. (2008). Comparing efficiencies of genetic crossover operators for one machine total weighted tardi-ness problem. Applied Mathematics and Computation, 199(2), 590-598. [16]Lin, Y. K., Fowler, J. W., & Pfund, M. E. (2013). Multiple-objective heuristics for scheduling unrelated parallel machines. European Journal of Operational Research, 227(2), 239-253. [17]Lin, Y. K., Pfund, M. E., & Fowler, J. W. (2014). Processing time generation schemes for parallel machine scheduling problems with various correlation structures. Journal of Scheduling,17(6), 569-586. [18]Lin, Y. K., & Lin, H. C. (2015). Bicriteria scheduling problem for unrelated parallel machines with release dates. Computers & Opera-tions Research, 64, 28-39. [19]Lin, Y. K., & Lin, C. W. (2013). Dispatching rules for unrelated parallel machine scheduling with release dates. International Journal of Advanced Manufacturing Technology, 67, 269-279. [20]Li, J. Q., Pan, Q. K., & Gao, K. Z. (2011). Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. The International Journal of Advanced Manufacturing Technology, 55(9-12), 1159-1169. [21]Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51, 172-181. [22]Mönch, L., Balasubramanian, H., Fowler, J. W., & Pfund, M. E. (2005). Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Computers & Operations Research, 32(11), 2731-2750. [23]Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing prob-lem. Omega, 11(1), 91-95.. [24]Nagar, A., Haddock, J., & Heragu, S. (1995). Multiple and bicriteria scheduling: A literature survey. European journal of operational research, 81(1), 88-104. [25]Oyetunji, E. O., & Oluleye, A. E. (2008). Heuristics for minimizing total completion time and number of tardy jobs simultaneously on single machine with release time. Research Journal of Applied Sciences, 3(2), 147-152. [26]Pinedo, M. (2012). Scheduling. New York: Springer. [27]Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information scienc-es, 181(12), 2455-2468. [28]Ruiz-Torres, A. J., Enscore, E. E., and Barton, R. R. (1997). Simulated annealing heuristics for the average flow-time and the number of tardy jobs bi-criteria identical parallel machine problem. Computers & industrial engineering, 33(1-2): 257-260. [29]Silva, J. D. L., Burke, E. K., & Petrovic, S. (2004). An introduction to multiobjective metaheuristics for scheduling and timetabling. Metaheuristics for multiobjective optimisation, 91-129. [30]Shahvari, O., and Logendran, R. (2017). An enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. Computers & Operations Research 77: 154-176. [31]Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research, 215(1), 126-135. [32]Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., and Sassani, F. (2009). Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints. Computers & Operations Research, 36(12): 3224-3230. [33]Ying, K. C., & Lin, S. W. (2012). Unrelated parallel machine scheduling with sequence-and machine-dependent setup times and due date constraints. International Journal of Innovative Computing, Information and Control, 8(5), 3279-3297.
|