跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.60) 您好!臺灣時間:2025/12/01 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉昱廷
研究生(外文):Yu-Ting Yeh
論文名稱:具有高動態響應與雙向功率控制之單相直流-交流轉換器
論文名稱(外文):A Single-phase DC-AC Converter with High Dynamic Response and Bi-directional Power Flow Control
指導教授:黃明熙
口試委員:歐聖源林法正
口試日期:2011-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:雙向直流-交流轉換器非線性負載功率因數修正
外文關鍵詞:Bidirectional DC-AC converternon-linear loadsingle-phase power factor control
相關次數:
  • 被引用被引用:5
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研製具有雙方向功率流動之單相直流-交流轉換器,此轉換器為全橋架構並以雙極性脈寬調變方式,執行電網併網或對非線性負載提供暫態電流以降低電壓諧波成分。其中,對電網併網時其直流側連接具馬達與發電機雙重操作模式之電力轉換裝置,再依據直流鏈電壓進行直流與交流側之能量流動控制;當直流鏈電壓高於預設值時所連接之電力轉換裝置處於發電模式,因此將該電能轉換為交流與功率因數接近-1之方式將能量饋入電網;相對地,當直流鏈電壓低於預設值時,將交流電能轉換為固定電壓之直流對該電力轉換裝置供電並維持輸入之功率因數接近1。為有效提高輕載效率,本文研發具交流整數電流弦波併網之控制策略,當直流鏈功率較低時以直流鏈之電解電容作為儲能,停止全橋電路之功率晶體切換。
於高動態響應之應用時,可直接併接於交流電源供應器之輸出端或電網,經由已知的電壓波形命令與所偵測之實際電壓,在有限輸出電流下針對非線性負載所造成的電壓失真進行補償,可有效降低交流電源供應器之輸出電壓諧波成分以符合法規需求。
系統是以TI TMS320F28035作為控制核心,建構110V/1kW之全橋轉換器,所有控制策略皆由軟體撰寫以實現數位功率控制,並由所建平台驗證所提控制策略之有效性。


This paper is aimed to design a single-phase DC- AC converter with bi-directional power flow control. The converter is implemented by a full-bridge circuit with bipolar PWM control to act as grid-connected inverter or provide transient current to non-linear load to reduce AC voltage harmonics. A power device with both motoring and generating mode is connected to DC link and controls power flow between power device in DC-side and power grid in AC-side of the proposed DC-AC converter according to DC link voltage. The converter becomes DC-AC converter and sends the energy generated by the power device to electric grid when the DC-link voltage is higher than default voltage command. As the DC link voltage is less than default voltage command, the proposed converter withdraws power from electric grid to the power device. Meanwhile, the converter also provides near unity power factor control for electric grid in the bi-directional power flow control. In order to enhance light-load efficiency of the proposed converter when send the energy to electric grid, an integral-cycles injection of current is developed. When the generated power is less than a preset value, the energy will be stored in the electrolytic capacitance installed in the DC link and all the power switches of full-bridge circuit are turned off.
In the need of high dynamic response for AC power supply with line frequency transformer as isolated output, the AC-side of the proposed converter is connected to output of the line-frequency transformer. The converter co-works with the AC power supply and provides extra transient current, which is determined by the difference between AC voltage command and actual voltage of load, for the nonlinear loads to compensate the voltage distortion. Therefore, output voltage harmonics of the AC power supply can be reduced dramatically to meet the requirement of regulations.
A single-phase full-bridge DC-AC converter controlled by a DSP-TMS320F28035 with 110V/1 kW is constructed. To realize the digital power control, all the controlling strategies are written by software. Some experimental results are provided to show its efficiency.


目 錄

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法 5
1.3論文大綱 7
第二章 雙向功率控制之直流-交流轉換器原理與分析 9
2.1前言 9
2.2直流-交流轉換器之基本架構 9
2.3全橋電路之脈波寬度調變 11
2.3.1 PWM單極性電壓切換 11
2.3.2 PWM雙極性電壓切換 14
2.4 理想直流-交流轉換器數學模式 17
2.5 功率因數與諧波分析 20
第三章 具雙向功率控制之直流-交流轉換器 25
3.1 前言 25
3.2 電路硬體設計 25
3.2.1 輸入濾波電感值設計 27
3.2.2 輸入濾波電容值設計 28
3.2.3 功率晶體開關與二極體之選擇 28
3.3 雙向功率調控與其軟體規劃 28
3.3.1 雙向功率系統主流程 29
3.3.2 比例積分控制器之設計 31
3.4系統模擬及實驗結果 32
3.4.1 模擬環境建構 32
3.4.2 模擬結果 34
3.4.3 實驗結果 36
3.4.4 實機驗證 44
第四章 直流-交流轉換器之低功率注入電網調控 45
4.1 前言 45
4.2 低功率注入電網之工作原理 45
4.3 低功率注入電網之控制策略 50
4.4 低功率注入電網之實驗結果 52
4.4.1 單模組低功率注入電網之實驗結果 53
4.4.2 多模組低功率注入電網之實驗結果 55
第五章 高動態響應之直流-交流轉換器設計 56
5.1前言 56
5.2文獻探討 56
5.3非線性負載分析 59
5.4非線性負載補償策略 61
5.5實驗結果 64
第六章 結論與未來展望 68
6.1結論 68
6.2未來展望 69
參考文獻 70
符號彙編 75


[1] http://www.tri.org.tw/unfccc/ “京都議定書英文版” 台灣因應氣候變化綱要。
[2] http://www.npf.org.tw/ “哥本哈根會議及台灣之因應”國家政策研究基金會。
[3] J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C.P. Guisado, M. A.M. Prats, J.I. Leon, and N. Moreno-Alfonso, “Power electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Aug. 2006.
[4] http://solarpv.itri.org.tw/aboutus/index.asp 太陽光電資訊網。
[5] S. Jung, Y. Bae, S. Choi, and H. Kim, “A low cost utility interactive inverter for residential fuel cell generation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2293 – 2298, Nov. 2007.
[6] H. Ribeiro, A. Pinto, and B. Borges, “Single-stage DC-AC converter for photovoltaic systems,” in IEEE 2010 Energy Conversion Congress and Exposition , pp. 604 - 610, Sept. 2010.
[7] Y.K. Lo, T.P. Lee, and K.H. Wu, “Grid-connected photovoltaic system with power factor correction,” IEEE Trans. Ind. Electron., vol. 55 , no. 5 , pp. 2224 - 2227, May 2008.
[8] D.C. Lee and Y.S. Kim, “Control of single-phase-to-three-phase AC/DC/AC PWM converters for induction motor drives,” IEEE Trans. Ind. Electron., pp. 797 - 804 , vol. 54, no. 2, Apr. 2007.
[9] D.C. Erb, O.C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles, ”in Proc. IEEE APEC’10, 2010, pp.2066 - 2072, vol.11.
[10] T.G. Habetler, “A space vector-based rectifier regulator for AC/DC/ACconverters,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30–36, Jan. 1993.
[11] R. Wu, S.B. Dewan, and G.R. Slemon, “A PWM AC-to-DC converter with fixed switching frequency,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 880–885, Sept. 1990.
[12] N. Mohan, T.M. Undeland, and W.P. Robbins, “Power electronics : converters, applications, and design, third edition, ” John Wiley& Sons Inc. 2003.
[13] K.S. Low, “A digital control technique for a single-phase PWM inverter,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 672–674, Aug. 1998.
[14] D. Dong, D. Boroyevich, R. Wang and I. Cvetkovic, “A two-stage high power density single-phase AC-DC bi-directional PWM converter for renewable energy systems, ” in IEEE 2010 Energy Conversion Congress and Exposition., 2010, pp. 3862 – 3869.
[15] S. Okada, T. Nunokawa and T Takeshita, “Digital control scheme of single-phase uninterruptible power supply,” in Proc. IEEE INTELEC Conf., 2009, pp. 1– 6.
[16] G. Shen, X. Zhu, J. Zhang and D. Xu , “A new feedback method for PR current control of LCL-Filter-Based grid-connected inverter,” IEEE Trans. Ind. Electron., pp. 2033 – 2041 , vol. 57, no. 6, Jun. 2010.
[17] T.F. Wu, K.H. Sun, C.L. Kuo, and C.H. Chang , “Predictive current controlled 5-kW single-phase bidirectional inverter with wide inductance variation for DC-Microgrid applications,” IEEE Trans. Power Electron., pp. 3076 - 3084, vol. 25, no. 12, Dec. 2010.
[18] H. Qian, J. Zhang, J.S. Lai, and W. Yu, “A high-efficiency grid-tie battery energy storage system,” IEEE Trans. Power Electron., pp. 886 - 896, vol. 26, no. 3, Mar. 2011.
[19] M. Huang, J. Ying, D. Xu and W. Lin , “Full-bridge current mode high-frequency link inverters,” in Proc. IEEE PEDS’99 , 1999, pp. 961 - 965.
[20] J.R. Rodriguez, J.W. Dixon, J.R. Espinoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron. , vol. 52, no. 1, pp. 5–22, Feb. 2005.
[21] “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems” , IEEE Std 1547.2-2008 ,2003.
[22] “IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems”, IEEE Std. 519, 1992.
[23] Electromagnetic Compatibility (EMC)—Part 3: Limits—Section 2: Limits for Harmonic Current Emissions (Equipment Input Current <16 A per Phase), IEC61000-3-2 Doc., 1995.
[24] http://eng.changsung.com, Chang Sung Corporation.
[25] 黃夢谷,研製具有輸出變壓器與用戶端電壓迴授之交流電源供應器,碩士論文,國立臺北科技大學電機工程研究所,台北,2009。
[26] http://www.linear.com, “LTC3410”.
[27] Fornage and Martin, “Method and apparatus for improved burst mode during power conversion,” in free-patents-online ,Application Number:12/249533 , Apr. 2010.
[28] H. Pinheiro, F. Botteron, J.R. Pinheiro, H.L. Hey, and H.A. Grundling, “A digital controller for single-phase UPS inverters to reduce the output DC component,” in Proc. IEEE PESC’04, 2004, pp. 1311–1314 , vol. 2.
[29] G. Franceschini, E. Lorenzani, A. Bellini, and A. Fratta, “Compensation of magnetic core saturation for grid connected single-phase power converters,” International Conference on Electrical Machines, pp. 1-6 , 2010.
[30] F.L. Tofoli, J.C. Schonell, C.A. Gallo and S.M.R. Sanhueza, “A low cost single-phase grid-connected photovoltaic system with reduced complexity,” in Power Electronics Conference, Brazilian, pp. 1033-1038, 2009.
[31] D. Ismail, M.N.K. Anuar, N. Indra, C. Shatri, and M. Reza, “Current transformer reaction with linear and non-linear loads,” in Power Engineering and Optimization Conference (PEOCO), pp. 406 - 411, June 2010.
[32] L.W. Pierce, “Transformer Design and Applications for Non-sinusoidal Load Current,” IEEE Trans. Ind. Appl ., vol. 32, no. 3, pp. 633-645, June 1996.
[33] A.A. McLennan , “High crest factor loads on UPS systems”, in Proc. IEEE INTELEC Conf. ,1989, pp.19.8/1 - 19.8/4 , vol. 2.
[34] R.K. Tripathi and C.P. Singth, “Power Quality Control of Unregulated Non-linear Load,” in Power Control and Embedded Systems (ICPCES) Conference, pp. 1-6, 2010.
[35] B.R Lin and Y.L Hou, “Simplified control method for single-phase multilevel active rectifier with current harmonic filtering characteristics,” IEEE Trans. Power Electron., pp. 85 - 96, vol.148, no. 1. June 2001.
[36] T. Tanaka, E. Hiraki, K. Ueda, K. Sato and S. Fukuma, “A novel detection method of active and reactive currents in single-phase circuits using the correlation and cross-correlation coefficients and Its applications,” IEEE Trans. on Power Deliv., pp. 2450-2456., vol. 22, Oct. 2007.
[37] L.R. Limongi, R. Bojoi, G. Griva, and A Tenconi, “New control scheme for single-phase active power filters,” in Proc. IEEE PESC’08, 2008, pp. 2894 - 2900.
[38] H. Komurcugil and O. Kukrer, “A new control strategy for single-phase shunt active power filters using a Lyapunov function,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 305-312, Feb. 2006.
[39] S.A.O.D. Silva, R.A. Modesto, A. Goedteland, and C.F. Nascimento, “A single-phase UPS system with series-parallel power-line conditioning,” in Proc. IEEE IECON’09, 2009 , pp.120 - 125 .
[40] D. W. Hart, “Introduction to power electronics , ”東華書局。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 2.王守範、王振瀾、謝堂卅、曲俊麒 (1987) 省產主要木材之抗白蟻性與藥劑防止白蟻效能之研究。林業試驗所研究報告季刊2 (2) : 117-128。
2. 3.王松永、張宗豫 (1989) 八種木材及五種防腐劑之抗蟻性的室內促進試驗。林產工業研究論文。8 (3):13-31。
3. 4.王振瀾、林天書、尹華文 (1993) 進口柳桉木之抗白蟻性評估及白蟻防治現況調查。林業試驗所研究報告季刊,8 (3):251-257。
4. 9.李文權 (1988) 高等植物的化學防衛物質。科學農業 36 : 109-144。
5. 16.林天書、尹華文 (1992) 十種省產闊葉樹材抗家白蟻之研究。林業試驗所研究報告季刊7 (1) : 101-108。
6. 17.林勝傑、謝堂州、張上鎮 (1992) 化學藥劑及塗料處理對木材抗蟻性影響之研究。林業試驗所研究報告季刊 7 (4):339-346。
7. 18.林勝傑、謝瑞忠 (2004) 植物抽出成分之抗蟻性,林業研究專訊11 (6):27-29
8. 19.林福文 (2003) 中草藥活性成分提取分離方法之簡介。食品工業期刊 35 : 35-41。
9. 20.岩素芬 (2002) 紙質檔案蟲菌處理技術探討。檔案季刊1 (4):1-11。
10. 36.葉民權 (2000) 木質板在杉木結構牆護板之水平剪力抵抗性能。林產工業。19 (2):219-227。
11. 38.張上鎮 (1995b) 白蟻之生態、生活習性與防治驅除法。林產工業。8 (2) : 70-80。
12. 39.張上鎮、王升陽 (1995) 抗白蟻性木材抽成分之探討。林產工業。14 (2) : 150-157。
13. 40.張上鎮 (2000) 土樹種木材抽出成分之分析、生物活性與展望。林業研究專訊。pp. 1-2 。
14. 45.楊時榮 (1988) 低氧處理在圖書保存與蟲菌防治上的應用。書苑季刊38:61-66。
15. 47.楊正澤 (1999) 白蟻社會性取食行為之多樣性。農業世界雜誌 194:31-33。