跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊景翔
研究生(外文):CHUANG, CHING-HSIANG
論文名稱:共軛聚電解質作為電洞傳輸層及界面修飾層用於反式鈣鈦礦太陽能電池
論文名稱(外文):Conjugated Polyelectrolytes as Hole Transport Layer and Interfacial Modification Layerfor Inverted Perovskite Solar Cells
指導教授:芮祥鵬芮祥鵬引用關係王立義
指導教授(外文):RWEI, SYANG-PENGWANG, LEE-YIH
口試委員:芮祥鵬王立義魏騰芳
口試委員(外文):RWEI, SYANG-PENGWANG, LEE-YIHWEI, TENG-FANG
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:共軛聚電解質電洞傳輸層界面修飾層鈣鈦礦太陽能電池
外文關鍵詞:Conjugated polyelectrolyteHole transport layerInterfacial modification layer,Perovskite solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
反式鈣鈦礦太陽能電池中,常以PEDOT:PSS作為電洞傳輸層 (hole transport layer, HTL),本研究使用兩種共軛聚電解質 (BTFLSO3、BTFLNMe3)來取代PEDOT:PSS,並比較陰、陽離子對於元件效率的影響。由於,BTFLSO3及BTFLNMe3的表面功函數 (-5.40 eV、-5.44 eV)高於PEDOT:PSS (-5.20 eV),因此,使用BTFLSO3或BTFLNMe3來取代PEDOT:PSS均可有效提高元件的開環電壓(Voc)。電化學阻抗圖譜分析顯示BTFLSO3元件比BTFLNMe3元件具有更高的載子再結合阻抗,前者的Voc可達1.01 V而後者則為0.87 V。此外,在SEM實驗中,以BTFLSO3作為電洞層得到的鈣鈦礦晶粒大小 (grain size)明顯比PEDOT:PSS及BTFLNMe3的還大,由XRD實驗的驗證下鈣鈦礦特徵峰的半高寬也是BTFLSO3的最窄,因此,以BTFLSO3製備的元件具有較大的短路電流 (Jsc),成功增加電池效率。另外利用BTFLNMe3可溶於甲醇之特性,將其塗佈在電子傳輸層 (PCBM)與電極 (Ag)之間做為界面修飾層 (interfacial modification layer, Interlayer),由於,以BTFLNMe3修飾銀過後的表面功函數 (-4.40 eV)比銀 (-4.60 eV)還高,因此能進一步提升電池的Voc。
In this work, we applied two new conjugated polyelectrolytes, BTFLSO3 and BTFLNMe3, to replace PEDOT:PSS as the hole transport layer of inverted perovskite solar cells. Both work functions of BTFLSO3 (-5.40 eV) and BTFLNMe3 (-5.44 eV) are deeper than that of PEDOT:PSS (-5.20 eV), effectively increasing the open-circuit voltage (Voc) of solar devices. The results of electrochemistry impedance spectroscopy showed that the charge recombination resistance of the BTFLSO3-cell is apparently higher than that of the BTFLNMe3-cell; therefore, the former cell exhibited a high Voc of 1.01 V and the latter cell had a relatively low Voc of 0.87 V. Furthermore, the SEM images revealed the perovskite can grow into bigger grain sizes on the BTFLSO3 surface than on the BTFLNMe3 and PEDOT:PSS surfaces. The X-ray diffraction patterns also evidenced that the perovskite/BTFLSO3 possessed the narrowest full width at half maximum (FWHM) and the largest domain size, thus exhibiting an increased short-circuit current density (Jsc) and improved power conversion efficiency. In addition, BTFLNMe3 is soluble in methanol that avoids the partial dissolution of precoated PCBM and perovskite layers during spin-coating, so it was applied as an interfacial modification layer (interlayer) sandwiched between the electron transport layer (PCBM) and the cathode (Ag). With this layer, the work function of Ag was upshifted from -4.60 eV to -4.40 eV, and, consequently, a high Voc of 1.05 V was achieved.
摘要 ............................................................................................................................................. i
ABSTRACT ............................................................................................................................. iii
致謝 ............................................................................................................................................ v
目錄 ........................................................................................................................................... vi
圖目錄 ..................................................................................................................................... viii
表目錄 ....................................................................................................................................... xi
第一章 緒論 ............................................................................................................................ 1
1.1 前言 ............................................................................................................................... 1
1.2 太陽能電池簡介 ........................................................................................................... 3
1.2.1 太陽能電池種類..................................................................................................... 4
1.2.2 太陽能電池工作原理........................................................................................... 10
1.3 太陽光能 ..................................................................................................................... 14
1.4 元件特性參數 ............................................................................................................. 17
第二章 文獻回顧 .................................................................................................................. 19
2.1 鈣鈦礦太陽能電池 ..................................................................................................... 19
2.2 電洞傳輸層 ................................................................................................................. 20
2.3 界面修飾層 ................................................................................................................. 21
第三章 共軛聚電解質作為電洞傳輸層及界面修飾層用於反式鈣鈦礦太陽能電池 ...... 22
3.1 前言與研究動機 ......................................................................................................... 22
3.2 共軛聚電解質之合成與性質 ..................................................................................... 22
3.3 結果與討論 ................................................................................................................. 24
3.3.1 電洞傳輸層........................................................................................................... 24
3.3.2 界面修飾層........................................................................................................... 36
3.4 結論 ............................................................................................................................. 44
第四章 實驗方法 .................................................................................................................. 45
4.1 鈣鈦礦太陽能電池之製備流程與方法 ..................................................................... 45
4.2 甲基碘化胺合成 ......................................................................................................... 47
4.3 化學藥品 ..................................................................................................................... 49
4.4 實驗儀器量測方法 ..................................................................................................... 51
第五章 結論與未來展望 ...................................................................................................... 56
參考文獻 .................................................................................................................................. 57
附錄 .......................................................................................................................................... 62
參考文獻

[1]亞坦新能,「科普貼」太陽能光伏發電入門常識,每日頭條KKNews,2017/09/22,https://kknews.cc/history/gb9k6el.html
[2]豐新光電股份有限公司,寶球能源股份有限公司,
http://www.walsolar.biz/zh-tw/index.asp
[3]National Renewable Energy Laboratory ( NREL),
https://www.nrel.gov/pv/cell-efficiency.html
[4]光伏人平台,單晶光伏組件和多晶光伏組件有什麼不同?,每日頭條KKNews,2017/12/28,
https://kknews.cc/science/4vjv263.html
[5]集邦新能源網,非晶矽太陽能電池的優缺點,每日頭條KKNews,2015/03/24,https://kknews.cc/zh-tw/tech/9zrnx5.html
[6]化學工業日報/材料世界網編譯,轉換效率達世界最高23.35%之CIS薄膜太陽電池,2019/03/20,
https://www.materialsnet.com.tw/DocView.aspx?id=37873
[7]Yuan, J. et al. “Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core”, Joule, 3, 1140 (2019).
[8]Kevin M. et al. “Conjugated Polymer Photovoltaic Cells”, Chem. Mater., 16, 4533 (2004).
[9]O'Regan, B. et al. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737 (1991).
[10]維基百科,染料敏化太陽能電池,
https://zh.wikipedia.org/wiki/%E6%9F%93%E6%96%99%E6%95%8F%E5%8C%96%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0
[11]中山大學,物理系實驗演示-太陽能電池,
http://www2.nsysu.edu.tw/physdemo/2012/E4/E4.php
[12]Bittner, E. R. et al. “Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra”, J. Chem. Phys., 122, 214719 (2005).
[13]Cheng, Y. J. et al. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications” Applications. Chem. Rev., 109, 5868 (2009).
[14]Wikimedia commons, File: solar Spectrum.png,
https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
[15]Laser Focus World, PHOTOVOLTAICS: Measuring the ‘Sun’, 2009/05/21
https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun
[16]Cheng, Y. J. et al. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications” Applications. Chem. Rev., 109, 5868 (2009).
[17]交大光電-盧廷昌老師個人實驗室,鈣鈦礦雷射,2019/05/15,
http://140.113.76.112/zh_tw/research/res/intro2_4
[18]Kojima, A. et al. “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 176050 (2009).
[19]Im, J. H. et al. “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, 3, 4088 (2011).
[20]Kim, H. S. et al. “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep., 2, 591 (2012).
[21]Liu, M. et al. “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 395 (2013).
[22]Xiao, Z. et al. “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 7, 2619 (2014).
[23]Jeon, N. J. et al. “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater., 13, 897 (2014).
[24]Kim, H. S. et al. “Mechanism of carrier accumulation in perovskite thin-absorber solar cells”, Nat. Commun., 4, 2242 (2013).
[25]Nguyen, W. H. et al. “ Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells”, J. Am. Chem. Soc. 136, 10996 (2014).
[26]Docampo P. et al. “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nat. Commun., 4, 2761 (2013).
[27]Wang, Q. et al. “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359 (2014).
[28]Jeng, J. Y. et al. “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells”, Adv. Mater., 26, 4107 (2014).
[29]Chen, S. et al. “Metal oxides for interface engineering in polymer solar cells”, J. Mater. Chem., 22, 24202 (2012).
[30]Manders, J. R. et al. “Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells”, Adv. Funct. Mater., 23, 2993, (2013).
[31]Jørgensen M. et al. “Stability/degradation of polymer solar cells”, Energy Mater. Sol. Cells, 92, 686 (2008).
[32]Mai, C. K. et al. “Facile Doping of Anionic Narrow‐Band‐Gap Conjugated Polyelectrolytes During Dialysis”, Angew. Chem., Int. Ed., 52, 12874 (2013).
[33]Henson, Z. B. “Synthesis and Properties of Two Cationic Narrow Band Gap Conjugated Polyelectrolytes”, J. Am. Chem. Soc., 135, 4163 (2013).
[34]Jo, J. W. et al. “Development of Self‐Doped Conjugated Polyelectrolytes with Controlled Work Functions and Application to Hole Transport Layer Materials for High‐Performance Organic Solar Cells”, Adv. Mater. Interfaces, 3, 1500703 (2016).
[35]Xu, H. et al. “Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells”, J. Mater. Chem. A, 5, 14689 (2017).
[36]Wang, K. et al. “Bulk heterojunction perovskite hybrid solar cells with large fill factor”, Energy Environ. Sci., 8, 1245 (2015).
[37]Ponseca, C. S. et al. “Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination”, J. Am. Chem. Soc., 136, 5189 (2014).
[38]Liu, Y. et al. “Understanding Interface Engineering for High‐Performance Fullerene/Perovskite Planar Heterojunction Solar Cells”, Adv. Energy Mater., 6, 1501606 (2016).
[39]Zhou, H. et al. “Interface engineering of highly efficient perovskite solar cells”, Science, 345, 542 (2014).
[40]Duan, C. et al. “Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells”, Chem. Soc. Rev., 42, 9071 (2013).
[41]He, Z. et al. “Largely Enhanced Efficiency with a PFN/Al Bilayer Cathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a Low Bandgap Polycarbazole Donor”, Adv. Mater., 23, 3086 (2011).
[42]Duan, C. et al. “Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior”, Energy Environ. Sci., 6, 3022 (2013).
[43]Xue, Q. et al. “Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer”, J. Mater. Chem. A, 2, 19598 (2014).
[44]Juarez-Perez, E. J. et al. “Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells”, Phys. Chem. Lett., 5, 680 (2014).
[45]研之成理,獻給被電化學阻抗譜(EIS)困擾的你,每日頭條KKNews,
https://kknews.cc/zh-tw/science/vza5ony.html
[46]林麗娟,X光繞射原理及其應用,工業材料86期,86年2月,第100頁。
[47]國立高雄大學應用物理學系,光電實驗室(C02-512-1),
https://ap.nuk.edu.tw/m/412-1000-130.php?Lang=zh-tw
[48]Li, Y. et al. “High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer”, ACS Appl. Energy Mater., 2, 31634 (2019).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊