跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊敏誼
研究生(外文):Min-Yi Yang
論文名稱:以廢棄玻璃及二次鋁渣再生經胺官能基改質吸附低濃度二氧化碳之研究
論文名稱(外文):Sorption of low carbon dioxide over waste glass and aluminum slag modified with amine functional group
指導教授:施育仁林淵淙
指導教授(外文):Yu-Jen ShihYuan-Chung Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:115
中文關鍵詞:吸附微波法再生二氧化碳沸石固體廢棄物減量
外文關鍵詞:CO2AdsorptionRegenerationReduction of Solid WastesZeoliteMicrowave
相關次數:
  • 被引用被引用:2
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
過度使用化石燃料除了造成環境污染亦面臨能源危機,促使再生能源發展趨勢。而根據室內空氣品質標準規定CO2濃度八小時平均不得超過1000 ppm ,超過1000 ppm會使人感到疲倦、昏沉。沸石具有吸附空氣污染物之用途,而沸石主要由矽、鋁所組成,因此本研究蒐集廢棄玻璃及二次鋁渣,將廢玻璃及鋁渣回收再利用,將能降低其環境潛在威脅,以達到廢棄物資源高質化之目的,故本研究為發展一套快速且低成本的微波再生技術合成沸石。為提高吸附CO2之吸附量,本研究使用胺附著於沸石上,使得CO2的吸附能力提高。研究結果發現合成沸石以固液比10 mg/ml、微波加熱溫度200°C及微波時間4小時,可達到最佳合成效果,其比表面積為56.7 m2/g,而經XRD分析顯示合成沸石主要物質為羥基沸石(Hydroxycancrinite)。再將合成沸石進行胺基改質,其條件為AMP + MEA基底液為甲醇與沸石之重量百分比68%、浸泡時間2.5 hr及浸泡溫度70°C,於80°C下吸附CO2,進行管柱內二氧化碳吸附驗試驗,二氧化碳濃度為1500 ± 5% ppm,於40min時吸附達平衡,吸附量可以達到32.5 mg/g。並經反覆吸脫附試驗,經10次循環,吸附指標下降至78.1%。
In addition to causing environmental pollution, excessive use of fossil fuels is also facing an energy crisis, prompting the development of renewable energy. According to the indoor air quality standards, the average CO2 concentration should not exceed 1000 ppm for eight hours. If it exceeds 1000 ppm, people will feel tired and faint. Zeolite has the purpose of adsorbing air pollutants, and zeolite is mainly composed of bismuth and aluminum. Therefore, this study collects waste glass and secondary aluminum slag, and recycles waste glass and aluminum slag, which will reduce potential environmental threats. In order to achieve the goal of high quality waste resources, this study developed a fast and low-cost microwave regeneration technology to synthesize zeolite. In order to increase the adsorption amount of adsorbed CO2, this study used an amine attached to the zeolite to improve the adsorption capacity of CO2. The results show that the synthetic zeolite can achieve the best synthesis effect with a solid-liquid ratio of 10 mg/ml, microwave heating temperature of 200 ° C and microwave time of 4 hours, and its specific surface area is 56.7 m2 /g. The XRD synthesized zeolite evidenced that Hydroxycancrinite. The synthetic zeolite is further subjected to amine-based modification under the condition that the AMP + MEA base liquid is 68% by zeolite weight of methanol, 2.5 hrs of the soaking time, and the soaking temperature at 70 ° C, and CO2 is adsorbed at 80 ° C to carry out the column. The internal carbon dioxide adsorption test has a carbon dioxide concentration of 1500 ±5% ppm, and the adsorption reaches equilibrium in 40 min, and the adsorption amount can reached 32.5 mg/g. After repeated adsorption and desorption experiments, for 10 cycles, the adsorption capacity decreased to 78.1%.
論文審定書 i
論文公開授權書 ii
摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻探討 4
2.1 廢玻璃 4
2.2 鋁渣 5
2.3 沸石 6
2.3.1 廢棄物再生沸石 9
2.4 二氧化碳捕捉技術 11
2.5 胺類處理二氧化碳之技術 14
2.5.1不同胺類比較 14
2.5.2胺類與複合材料之合成方法 15
2.5.3 胺類去除二氧化碳反應機制 16
2.5.4 胺基改質吸附材吸附二氧化碳之研究 17
第三章 研究方法與實驗方法 19
3.1 研究流程 19
3.2實驗設計法 21
3.3 實驗步驟 22
3.3.1 廢棄玻璃前處理 22
3.3.2 矽酸鈉溶出 22
3.3.3 鋁渣前處理 23
3.3.4 微波合成沸石 23
3.3.5 胺官能基改質 24
3.3.6再生載體去除二氧化碳之試驗 25
3.3.6.1 吸附量之計算 26
3.4 分析方法與材料設備 28
3.4.1 儀器設備 28
3.4.2 藥品耗材 29
3.4.3合成沸石所使用之儀器 30
3.4.5合成沸石分析與鑑定 32
第四章 結果與討論 38
4.1 吸附材之基礎鑑定及分析 39
4.1.1 鋁渣及吸附材之氮氣等溫吸附/脫附測量 39
4.1.2 鋁渣及合成沸石之結構排列鑑定 42
4.1.3環境掃描式顯微鏡分析鋁渣及合成沸石 44
4.1.4能量分散式光譜儀分析鋁渣 47
4.1.5感應偶合電漿光譜分析鋁渣及合成沸石 50
4.1.6 紅外線光譜儀分析表面胺官能基合成沸石 53
4.1.7 TGA熱重分析儀分析表面胺官能基合成沸石 54
4.2探討廢玻璃之溶解率 56
4.2.1以DOE探討廢玻璃溶解 56
4.2.2 廢玻璃在不同條件之溶解率最佳應用 60
4.2.3 以CCD探討廢玻璃最佳溶解率趨勢 63
4.3 利用鋁渣與廢玻璃合成沸石 68
4.3.1以DOE探討鋁渣與矽酸鈉溶液合成沸石之最佳比表面積 68
4.3.2鋁渣與矽酸鈉溶液合成沸石在不同條件之最佳比表面積應用 70
4.3.3 以CCD探討鋁渣與矽酸鈉合成沸石最佳比表面積趨勢 73
4.4 胺基改質合成沸石吸附二氧化碳試驗 76
4.4.1 以DOE探討胺基改質合成沸石吸附二氧化碳試驗 76
4.4.2 胺基改質合成沸石在不同條件之吸附二氧化碳試驗最佳應用 80
4.4.3 以CCD探討胺基改質合成沸石最佳吸附量趨勢 84
4.4.4 單次吸附實驗測試 88
4.4.5 二氧化碳反覆吸脫附試驗 89
4.4.6 胺基改質沸石與商用沸石之比較 90
4.5 成本效益分析 91
五、結果與建議 93
六、參考文獻 96
Bukhari SS., Behin J., Kazemian H., Rohani S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel. 2015; 140(15): 250-66.
Chen C., Zhang S., Row KH., Ahn WS. Amine–silica composites for CO2 capture: A short review. Journal of Energy Chemistry. 2017; 26(5): 868-80.
Chen PC., Yang MW., Wei CH., Lin SZ. Selection of blended amine for CO2 capture in a packed bed scrubber using the Taguchi method. International Journal of Greenhouse Gas Control. 2016; 45: 245-52.
Chatzidiakou L., Mumovic D., Summerfield A. Is CO2 a good proxy for indoor air quality in classrooms Part 2: Health outcomes and perceived indoor air quality in relation to classroom exposure and building characteristics. Building Serv Eng Res Technol. 2015; 36: 162-81.
Cogswell CF., Jiang H., Ramberger J., Accetta D., Willey RJ., Choi S. Effect of Pore Structure on CO2 Adsorption Characteristics of Aminopolymer Impregnated MCM-36. American Chemical Society. 2015; 31(15): 4534-41.
Chen B., Shi C., Crocker M., Wang Y., Zhu AM. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Applied Catalysis B: Environmental. 2013; 132- 133.
Chiu CF., Chen MH., Chang FH. Carbon Dioxide Concentrations and Temperatures within Tour Busesunder Real-Time Traffic Conditions. PLoS ONE. 2015; 10(4): e0125117.
Coninck H., Benson SM. Carbon Dioxide Capture and Storage: Issues and Prospects. Annual Review of Environment and Resources. 2014; 39: 243-70.
Chen Z., Deng S., Wei H., Wang B., Huang J., Yu G. Activated carbons and amine-modified materials for carbon dioxide capture — a review. Frontiers of Environmental Science & Engineering. 2013; 7(3): 326-40.
Čorňák Š., Horák V., Chládek Z., Ulman J. The evaluation of air quality in military vehicles. Science & Military. 2012; 1: 50-54.
Criadoa M., Jiménez AF., Torre A.G., Aranda MAG., Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research. 2007;37(5): 671-79.
Deanna M., Berend S., Jeffrey R. Carbon dioxide capture: prospects for new materials. Angew. 2010; 49: 6058-82.
García-Abuín A., Gómez-Díaz D., Navaza J. M., Rumbo A. CO2 capture by pyrrolidine: Reaction mechanism and mass transfer. AlChE J. 2014; 60: 1107-19.
Gargiulo N.. Peluso A., Aprea P., Pepe F., Caputo D. CO2 Adsorption on Polyethylenimine-Functionalized SBA-15 Mesoporous Silica: Isotherms and Modeling. American Chemical Society. 2014; 59(3): 896-902.
Gray ML., Soong Y., Champagne KJ., Pennline H., Baltrus JP., Stevens R.W., Khatri R., Chuang SSC., Filburnc T. Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology. 2005; 86(14-15): 1449-55.
Gil A., Korili S. A. Chemical Engineering Journal. 2016; 289: 74-84.
Huang HY., Yang RT. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas. Separation technology. 2003; 42(12): 2427-33.
Harlick Peter JE., Sayari A. Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance. 2007; 46 (2): 446–58.
Jae EO., Monteiro PJM., Jun SS., Choi S. Clark SM. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research.2010; 40(2): 189-96.
Koronaki IP., Prentza L., Papaefthimiou VD. Parametric analysis using AMP and MEA as aqueous solvents for CO2 absorption. Applied Thermal Engineering. 2017; 110(5): 126-35.
Kua HW., Pedapati C., Lee RV., Kawi S. Harn WeiKuaaChakradharPedapatiaRey VernLeeaSibudjingKawib. Journal of Cleaner Production. 2019; 210(10): 860-71.
Luberti M., Kim YH., Lee CH., Ferrari MC., Ahn H. New momentum and energy balance equations considering kinetic energy effect for mathematical modelling of a fixed bed adsorption column. Adsorption. 2015; 21(5): 353-63.
Lee NK., Lee HK. Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construction and Building Materials. 2015; 81(15): 303-12.
Lee NK., Khalid HR., Lee HK. Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous and Mesoporous Materials. 2016; 229: 22-30.
Lin C., Rüssel C., Dai S. Chalcogenide glass-ceramics: Functional design and crystallization mechanism. Progress in Materials Science. 2018; 93: 1-44.
Liu JL., Lin RB. Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture. Powder Technology. 2013; 241: 188-95.
Lee, KM., Lim YH., Park, C. J. and Jo, Y. M. (2012)”Adsorption of low-level CO2 using modified zeolites and activated carbon”Industrial & Engineering Chemistry Research, 51, 1355-63.
Majdinasab AR., Yuan Q. Microwave synthesis of zeolites from waste glass cullet using indirect fusion and direct hydrothermal methods: A comparative study. Ceramics International. 2019; 45(2): 2400-10.
Novak MAS., Tan S., Jones CW. Role of Additives in Composite PEI/Oxide CO2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO2 Capture from Simulated Ambient Air. American Chemical Society. 2015; 7(44): 24748-59.
Nowicki J., Mokrzycki Ł., Sulikowski B. Synthesis of Novel Perfluoroalkylglucosides on Zeolite and Non-Zeolite Catalysts. Molecules. 2015; 20: 6140-52.
Ruiz-Castillo P., Blackmond DG., Buchwald SL. Rational Ligand Design for the Arylation of Hindered Primary Amines Guided by Reaction Progress Kinetic Analysis. Journal of the American Chemical Society. 2015; 137(8): 3085-92.
Sayari A., Heydari-Gorji A., Yang Y. CO2-Induced Degradation of Amine-Containing Adsorbents: Reaction Products and Pathways. J. Am. Chem. Soc. 2012; 134(33): 13834-42.
Shoumkova A., Stoyanova V. SEM–EDX and XRD characterization of zeolite NaA, synthesized from rice husk and aluminium scrap by different procedures for preparation of the initial hydrogel. Journal of Porous Materials. 2013; 20(1): 249-55.
Sakthivel T., Reid DL., Goldstein I., Hench L., Seal S. Hydrophobic High Surface Area Zeolites Derived from Fly Ash for Oil Spill Remediation. American Chemical Society.2013; 47(11): 5843-50.
Sriprom P., Neramittagapong S., Lin C., Wantala K., Neramittagapong A., Grisdanurak N. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts. J. Air & Waste Management Association. 2015; 65(7): 828-36.
Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., Kapteijn F., Gascon J. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture. Chem. Soc. Rev.2015; 44(8): 2421-54.
Soo V. K., Peeters J., Compston D. P., Doolan M., Duflou J. R. Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. Journal of Cleaner Production. 2018; 178: 119-32.
Sousa L. V., Silva A. O. S., Silva B. J. B., Quintela P. H. L., Barbosa C. B. M., Fréty R., Pacheco J. G. A. Preparation of zeolite P by desilication and recrystallization of zeolites ZSM-22 and ZSM-35. Materials Letters. 2018; 217: 259–62.
Speybroeck VV., Hemelsoet K., Joos L., Waroquier M., Bell RG., Catlow CRA. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015; 44: 7044-11.
Terzano R., C. D''Alessandro, M. Spagnuolo,Facile Zeolite Synthesis from Municipal Glass and Aluminum Solid Wastes.CLEAN–Soil Air Water. 2015; 43: 133-40.
Terzano, R., Spagnuolo, M., Medici, L., Tateo, F., Ruggiero, P. Characterization of different coal fly ashes for their application in the synthesis of zeolite X as cation exchanger for soil remediation. Fresenius Environmental Bulletin.2005; 14(4): 263-67.
Ünveren EE., Monkul BÖ., Sarıoğlan Ş., Karademir N., Alperb E. Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum. 2017; 3(1): 37-50.
Wang Y., Du T., Qiu Z., Song Y., Che S., Fang X. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Materials Chemistry and Physics. 2018; 207: 105-13.
Whiting GT., Meirer F., Mertens MM., Bons AJ., Weiss BM., Stevens PA., Smit E., Weckhuysen B M. Binder Effects in SiO2-and Al2O3-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy. ChemCatchem. 2015; 7: 1312-21.
Yang T., Li L., Gang X., Zhang K., Li K. Promoting Effect of Inorganic Alkali on Carbon Dioxide Adsorption in Amine-Modified MCM-41. Energies.2016; 9(9): 667.
Yu CH., Huang CH., Tan CS. Review of CO2 Capture by Absorption and Adsorption. AAQR 2012; 12:745-69.
Zhang M., Zhao X., Zheng S. Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates. Chem. Commun. 2014; 50: 4455-58.
Zhang Y., Leng Z., Zou F., Wang L., Chen SS., Tsang DCW. Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt. Journal of Cleaner Production.2018; 172(20): 686-95.
Zhang G., Zhao P., Xu Y. Development of amine-functionalized hierarchically porous silica for CO2 capture. Journal of Industrial and Engineering Chemistry.2017; 54(25): 59-68.
Zhao P., Zhang H., Gao H., Zhu Y., Yu J., Chen Q., Zhao H. Separation and characterisation of fused alumina obtained from aluminiumchromium slag. Ceramics International. 2018; 44: 3590–5.
張成光,「利用分子篩為擔體製備吸附劑以去除 空氣中 NH3氣體之研究」,國立交通大學環境工程研究所碩士論文,2007。
蔡志威,「應用鹼性溶液進行鋁渣脫氮之研究」,嘉南藥理科技大學環境工程與科學系碩士論文,2013。
謝祝欽、鄭廣銘,「改質蜂巢狀載體去除室內二氧化碳之研究」,科技學刊,第22 卷,科技類第1 期,第43-56 頁,2013。
陶以瑄,「金屬改質沸石與奈米鈦管對低濃度二氧化碳吸附/脫附效能研究」,國立交通大學環境工程研究所碩士論文,2013。
李明賢,「廢玻璃資源化應用於輕質節能篩」,逢甲大學工業工程與系統管理碩士學位論文,2014。
盧重興,「雙床變壓吸附塔填充13X沸石捕獲汽油發電機尾氣二氧化碳之研究」,中興大學環境工程學系碩士學位論文,2014。
行政院環保署室內空氣品質資訊網,「認識室內空氣品質的重要性」,2015。
談駿嵩、王志盈,「二氧化碳捕獲」,科學發展,第510期,2015。
林凱晨,「ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究」,國立臺灣師範大學化學系碩士論文,2015。
曾婉婷,「以稻殼廢棄物資源化製備多孔洞矽基吸附材料及其應用於空氣汙染控制之研究」,國立交通大學環境工程研究所博士論文,2016。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊