跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐韶鴻
研究生(外文):Shao-Hong Xu
論文名稱:應用改良型粒子群演算法於分數階系統之分數階PID控制器設計
論文名稱(外文):Design of Fractional-Order PID Controller for a Fractional Order Systems Using Modified Particle Swarm Optimization Approach
指導教授:李慶祥李慶祥引用關係
指導教授(外文):Ching-Hsiang Lee
口試委員:凃文福李宗恩
口試委員(外文):Wen-Fu TuTsung-En Lee
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系博碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:44
中文關鍵詞:粒子群演算法分數階系統PID控制器
外文關鍵詞:Particle swarm optimizationFractional order systemsPID controller
相關次數:
  • 被引用被引用:10
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是針對分數階系統,探討其最佳化控制器設計問題。在粒子群演算法的概念下,利用引入文獻中時變加速係數和時變慣性權重的改良型粒子群演算法來設計分數階PID控制器。整個演算法由MATLAB執行,該演算法的有效性及優異性,於本文中與相關文獻之結果做比較,證明改良型的粒子群演算法在設計最佳化控制器時,在閉路系統之性能指標改進方面,確實比相關文獻來的更為優越。因此,使用此改良型粒子群演算法來設計分數階PID控制器,本文確實得到了分數階系統之最佳化控制器。
A optimal Fractional Order controller design problem is studied in this thesis, the particle swarm optimization method is used to search the best parameters of the FO controllers. Among different particle swarm optimization methods, this study shows the one with time-varying acceleration coefficients and time-varying intertia weight could result in a smallest performance index, The result show that the modified PSO method is highly suitable for the searching for optimal controller parameters of the FO systems.
摘 要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章 、緒論
1.1 文獻回顧與研究動機
1.2 論文綱要
第二章 、系統描述與預備知識
2.1 系統數學模型描述
2.2 分數階PID控制器(FOPID)
2.3 相關定義與引理
2.4 控制目標
第三章 、粒子群演算法
3.1 粒子群演算法沿革
3.2 基礎的粒子群演算法
3.3 常數慣性權重
3.4 時變慣性權重
3.5 時變加速係數
3.6 流程介紹
3.7 流程圖
第四章 、基於粒子群演算法之分數階PID控制器設計
第五章 、數值模擬
第六章 、結論
參考文獻

[1]Igor Podlubny, “Fractional Systems and PID-Control,” IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999.
[2]Karl J. Åström, Björn Wittenmark, “Adaptive Control: Second Edition,” Dover Publications, United States of America, 2008.
[3]Witold Pedrycz, “Fuzzy control and fuzzy systems Electronic and electrical engineering research studies. Control theory and applications series,” New York: John Wiley and Sons, 1992.
[4]M. T. Hagan, H.B. Demuth and M.Beale, “Neural Network Design,” PWS Company, 1996.
[5]C. T. Lin and C. S. G. Lee, “Neural Fuzzy Systems,” Prentice-Hall, 1999.
[6]James Kennedy and Russell Eberhart, “Particle Swarm Optimization,” in Proc. IEEE Int. Conf. Neural Networks, vol. IV,Perth, Australia, pp. 1942-1948, 1995.
[7]Rohit Gupta, Sanjay Gairola, Sanjeet Diwiedi, “Frational Order System Identification and Controller Design Using PSO,” International Conference on Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH14) 28 & 29 November 2014.
[8]周鵬程,”遺傳演法算原理與應用-活用MATLAB(第四版)”,全華出版社,2012年。
[9]林傑斌、張太平、卓彰賢,”MATLAB程式設計與實務“,博碩文化,2012年。
[10]Richard C. Dorf,Rober H.Bishop 原著;廖東成、陳志鏗、鍾翼能譯,“現代控制系統─初版”,偉明圖書有限公司,2001年。
[11]K. S. Miller and B. Ross, ”An Introduction to the Fractional Calculus and Fractional Differential Equations,” New York: Wiley, 1993.
[12]S. G. Samko, A. A. Kilbas, and O. I. Marichev, “Integrals and Derivatives of the Fractional Order and Some of Their Applications,” Minsk: Nauka i Tekhnika, 1987.
[13]C. Wang, “On the generalization of block pulse operational matrices for fractional calculus and applications,” J. Frankl. Inst. 315 (2) 91–102, 1983.
[14]K. B. Oldham and J. Spanier, “The Fractional Calculus,” New York: Academic, 1974.
[15]M. Caputo, “Linear model of dissipation whose Q is almost frequency independent—II,” Geophys. J. R. Astr. Soc, vol. 13, pp. 529–539, 1967.
[16]M. Caputo, ”Elasticita e Dissipacione,” Bologna: Zanichelli, 1969.
[17]Manuel Duarte Ortigueira, Fernando Coito, “From Differences to Derivatives,” Fractional Calculus and Applied Analysis 7(4), 2004.
[18]Jason, “粒子群最佳化法(Particle Swarm Optimization)簡介” 取自: http://ppt.cc/9BHLJ, 2012/08/03
[19]周至宏,“最佳化方法課程講義”,國立高雄應用科技大學,電機工程研究所,台灣。Section 3, pp. 1-6,2014年。
[20]Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE Int. Conf. Evol. Comput. Anchorage, AK, pp. 69-73, May 1998.
[21]Y. Shi and R. C. Eberhart, “Empirical study of particle swarmoptimization,” in Proc. IEEE Int. Conf. Evol. Comput, Washington, DC, pp. 1945-1950, July 1999.
[22]Ratnaweera, A., Halgamuge, S. K., and Watson, H. C., “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8(3), pp.240-255, 2004.
[23]A. Djari, T. Bouden and A. Boulkroune, “Design of Fractional-Order Controller (FOPID) for a Class of Frational-Order MIMO System Using a Particle Swarm Optimization (PSO) Approach,” Proceedings of the 3rd International Conference on Systems and Control, Algiers, Algeria, October 29-31, 2013.
[24]Yang Quan Chen, Dingyu Xue, and Huifang Dou, “Fractional Calculus and Biomimetic Control,” IEEE Int. Conf. on Robotics and Biomimetics (RoBio04), Shengyang, China, PDFrobio2004-347, August 2004.
[25]趙春娜,”分數階系統分析與設計(簡體書)“,國防工業出版社, pp.101,2011年。
[26]Mohammad SalehTavazoei, “Algebraic conditions for monotonicity of magnitude-frequency responses in all-pole fractional rder systems,” IET Control Theory and Applications, Tehran, Iran, pp.1093, December 2013.
[27]D.Marshiana, P.Thirusakthimurugan, “FRACTIONAL ORDER PI CONTROLLER FOR NONLINEAR SYSTEMS,” International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp.323, 2014.
[28]J.-D. Gabano, T. Poinot, “Fractional modelling and identification of thermal systems,” Signal Process, 91, pp. 531–541, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊