跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:武得途
研究生(外文):Vu Duc Tu
論文名稱(外文):Hybrid nanostructured materials based on upconversion nanocrystals for biomedical applications: Enhanced upconversion luminescence and Simultaneous bioimaging and photothermal therapy
指導教授:許佳振
指導教授(外文):HSU, CHIA-CHENLE, QUOC MINH
口試委員:林俊元甘宏志周禮君陳永恩
口試委員(外文):LIN, JIUNN-YUANKAN, HUNG-CHIHCHAU, LAI-KWANMICHAEL CHAN
口試日期:2018-07-19
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:120
外文關鍵詞:upconversion nanoparticleshybrid nanostructured materialsenhanced upconversion luminescencebiosensingbioimagingtemperature sensingphotothermal therapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Lanthanide (Ln3+) doped upconversion nanoparticles (UCNPs) possess unique upconversion luminescence (UCL) properties which can generate ultraviolet-visible (UV-VIS) luminescence under continuous-wave near-infrared (NIR) excitation via a stepwise multiphoton absorption process. Up to date, UCNPs have been studied for diverse research applications in display, security, photovoltaic and biomedicine. Compared with traditional downconversion fluorophores, such as organic dyes, quantum dots and gold nanomaterials, UCNPs exhibits numerous advantages to serve as a biomarker for biomedical applications, including photostability, no photobleaching, no blinking, no autoluminescence, low scattering, high signal-to-noise ratio, narrow emission spectra band, large anti-Stokes shifts, long luminescence lifetimes, biocompatibility, low toxicity, and deep penetration depth in biotissues. Various types of highly efficient UCNPs have been developed; with a typical one comprises sodium yttrium fluoride (NaYF4) host co-doped with ytterbium (Yb3+) sensitizer ions and activator ions, for example, erbium (Er3+), thulium (Tm3+) or holmium (Ho3+). However, up to now UCL quantum yields of Ln3+ ions doped UCNPs are rather low, especially in aqueous solution, which limits them to be widely used in bio-imaging and bio-sensing applications. One of the greatest trends and major challenges in the field of UCNPs research is the quest to enhance UCL efficiency. In this thesis, we have developed some strategies for enhancing UCL of UCNPs such as surface passivation (that is, core@shell structure), boardband sensitization (that is, neodymium doing), photonic crystal engineering (that is, 1D resonant waveguide grating (RWG)). Besides, we have synthesized a novel multifunctional nanocomposite combining gold nanorod (AuNR) and NaYF4:Yb3+,Er3+ UCNP for simultaneous bioimaging, temperature sensing and in vitro photothermal therapy of oral cancer cells.

Firstly, we have utilized the core@shell structure and broadband sensitization approaches with two major goals: (i) To suppress the surface defect-induced UCL quenching by growing a crystalline shell around core nanocrystal, leading to enhance UCL intensity of UCNPs, (ii) To tune excitation wavelength to 795 nm by doping of neodymium (Nd3+), avoiding the overheating effect associated with the use of 980 nm excitation. A variety of core@shell structured UCNPs has been synthesized through thermal decomposition technique, including: NaYF4:Yb3+,Er3+@NaYF4 core@shell UCNPs, and NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@NaYF4 core@shell@shell UCNPs. We demonstrate that UCL intensity of core@shell and core@shell@shell nanoparticles is one order of magnitude higher than those of corresponding core counterparts, indicating the important role of the shell as a shield from UCL quenching. Besides, the introduction of Nd3+ as sensitizer for UCNPs has ability to generate UCL emission under 795 nm excitation, overlapping with the first biologically transparent window in the range of wavelengths from 650 to 950 nm. This permits deep penetration depth into biotissues as well as low overheating effects. It is noteworthy that all the UCL emission bands of Nd3+-sensitized UCNPs under the excitation at 795 nm are enhanced about 3 to 4 times compared to those under the excitation at 976 nm, due to to the larger absorption cross section of Nd3+ at 795 nm.

We have also employed a RWG (a kind of photonic crystal substrate) comprised of a low-refractive index (low-n) mesoporous silica (n=1.22) sinusoidal grating layer and a thin high-n TiO2 waveguide layer to enhance UCL of NaYF4:Yb3+,Tm3+ core and NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@NaYF4 core@shell@shell UCNPs with more than 104 times in aqueous solution. The structure parameters of the low-n RWG are optimized through rigorous coupled-wave analysis (RCWA) simulation to build up strong local electric field near the interface between TiO2 and aqueous solution under dual-wavelength excitations (976 and 795 nm). When the low-n RWG is illuminated by NIR laser with an incident angle matching with the guided mode resonance (GMR) angle of the low-n RWG, UCL emission is dramatically enhanced thanks to the build-up of strong local field on the surface of the low-n RWG. Besides, the UCL emissions can be further enhanced 2-4 times when the UCL emission wavelengths coincide with their associated GMR wavelengths. Then, we have found that the streptavidin-conjugated UCNPs bioprobes can be used to detect biotin molecules on the surface of the low-n RWG. The results confirm that the low-n RWG is feasible for UCL biosensing and bioimaging applications.

Finally, we develop a hybrid nanostructured material based on the combination of UCNPs and AuNRs having the same absorption at 980 nm. For photoluminescence bioimaging probes, the UCL of Ln3+-doped UCNPs using NIR light excitation have many advantages to be served as bioimaging or therapy agents. Photothermal therapy (PTT) is widely used as a treatment protocol for cancer therapy. Among various PTT agents, AuNRs are especially attractive because their high efficient of absorbing NIR light and converting heat energy through surface plasmon resonance (SPR). Besides, UCNPs can play a role as an nanothermometer to determine local temperature generated from AuNRs. Herein, we design novel multifunctional hybrid nanocomposites based on the conjugation of AuNRs with NaYF4:Yb3+,Er3+ UCNPs to combine UCL, temperature-dependence and SPR properties for fulfilling both luminescence labeling, temperature sensing and photothermal functions under a single 976nm excitation source. The nanocomposites with the help of antibody conjugation can effectively label Her2 marker on the surface of OML-1 oral cancer cells with good specificity. Because of strong absorption at 976nm excitation wavelength, AuNR-UCNP nanocomposites result in high efficiency of PTT effect to kill cancer cells dramatically under 976 nm laser irradiation. Our AuNR-UCNP nanocomposites exhibit simultaneous diagnostic in vitro bioimaging, temperature sensing and PTT, which is feasible for multimodal imaging guided PTT applications.

ACKNOWLEDGEMENTS III
LIST OF FIGURES VII
LIST OF TABLES XIII
ABSTRACT 1
CHAPTER 1 INTRODUCTION TO UPCONVERSION NANOPARTICLES 3
1.1 LUMINESCENT MATERIAL 3
1.2 NANOTECHNOLOGY AND NANOMATERIAL 6
1.3 LUMINESCENT LANTHANIDE IONS 7
1.4 LANTHANIDE DOPED UPCONVERSION NANOPARTICLES 10
1.4.1 The upconversion mechanisms 12
1.4.2 Upconversion compositions 15
1.4.3 Synthesis and surface modification of upconversion nanoparticles 19
1.4.4 Enhancing luminescence of lanthanide-doped upconversion nanoparticles 24
1.4.5 Applications of upconversion nanoparticles 29
1.5 AIM OF THIS THESIS 32
1.6 REFERENCES 33
CHAPTER 2 SYNTHESIS AND CHARACTERIZATION OF UPCONVERSION NANOPARTICLES 39
2.1 INTRODUCTION 39
2.2 EXPERIMENTAL SECTION 41
2.2.1 Synthesis of hydrophobic sub-10nm UCNPs 41
2.2.2 Synthesis of hydrophylic UCNPs 41
2.2.3 Synthesis of hydrophobic sub-30nm UCNPs 41
2.2.4 Characterization 42
2.3 RESULTS AND DISCUSSIONS 43
2.3.1 Physical properties of hydrophobic sub-10nm UCNPs 43
2.3.2 Physical properties of hydrophilic UCNPs 47
2.3.3 Physical properties of hydrophobic sub-30nm UCNPs 48
2.4 CONCLUSION 49
2.5 REFERENCES 49
CHAPTER 3 SYNTHESIS AND CHARACTERIZATION OF CORE@SHELL-STRUCTURED UPCONVERSION NANOPARTICLES 52
3.1 INTRODUCTION 52
3.1.1 Design of core@shell structure for enhancing upconversion luminescence efficiency 52
3.1.2 Design of core@shell structure for tuning excitation wavelength 54
3.2 EXPERIMENTAL SECTION 56
3.2.1 Synthesis of core@shell NaYF4:Yb,Er@NaYF4 56
3.2.2 Synthesis of core@shell NaYF4:Yb,Tm@NaYF4:Yb,Nd 56
3.2.3 Synthesis of core@shell@shell NaYF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4 56
3.3 RESULTS AND DISCUSSIONS 57
3.3.1 Physical properties of core@shell NaYF4:Yb,Er@NaYF4 57
3.3.2 Physical properties of core@shell@shell NaYF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4 60
3.4 CONCLUSION 63
3.5 REFERENCES 63
CHAPTER 4 ENHANCING UPCONVERSION LUMINESCENCE EMISSION OF UPCONVERSION NANOPARTICLES IN AQUEOUS SOLUTION BY LOW REFRACTIVE INDEX RESONANT WAVEGUIDE GRATING 67
4.1 INTRODUCTION 68
4.2 EXPERIMENTAL SECTION 70
4.2.1 Preparation of streptavidin-functionalized UCNPs 70
4.2.2 Fabrication of UCNPs deposited low-n RWG structure 70
4.2.3 Preparation of biotinalyted low-n RWG structure 72
4.2.4 Detection of biotin 72
4.2.5 Simulation 72
4.3 RESULTS AND DISCUSSIONS 73
4.3.1 Enhancing UCL of NaYF4:Yb3+,Tm3+ UCNPs via low-n RWGs 73
4.3.2 Enhancing UCL of NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@NaYF4 UCNPs via low-n RWGs 84
4.4 CONCLUSION 87
4.5 REFERENCES 88
CHAPTER 5 SIMULTANEOUS DIAGNOSTIC BIOIMAGING, TEMPERATURE SENSING AND PHOTOTHERMAL THERAPY FOR ORAL CANCER CELLS USING UPCONVERSION NANOPARTICLES LINKED WITH GOLD NANORODS 92
5.1 INTRODUCTION 93
5.2 EXPERIMENT SECTION 96
5.2.1 Synthesis of AuNR and AuNR@Silica 96
5.2.2 Preparation of AuNR@Silica-UCNPs 97
5.2.3 Biofunctionalization of AuNR@Silica-UCNPs with streptavidin 97
5.2.4 In vitro cytotoxicity assay 98
5.2.5 In vitro upconversion luminescence image 98
5.2.6 In vitro photothermal therapy test 98
5.3 RESULTS AND DISCUSSIONS 99
5.3.1 Characterization of AuNM@Silica-UCNPs 99
5.3.2 Upconversion luminescence and photothermal ability of AuNM@Silica-UCNPs 100
5.3.3 Temperature-sensing properties of NR980@Silica-UCNPs 103
5.3.4 In vitro upconversion luminescence 106
5.3.5 Cell viability and photothermal therapy test 107
5.4 CONCLUSION 109
5.5 REFERENCES 109
CHAPTER 6 CONCLUSIONS AND PROSPECTS 113
APPENDIX 116
CURRICULUM VITAE 119

Chapter 1:
[1] J. C. G. Bunzli, C. Piguet, “Taking advantage of luminescent lanthanide ions”, Chem. Soc. Rev., 2005, 34, 1048-1077.
[2] C. Ronda, “Luminescence: From theory to applications”, Wiley, 2008.
[3] G. Blasse, B. C. Grabmaier, “Luminescent materials”, Springer, 1994.
[4] R. S. Liu, “Phosphors, upconversion nano particles, quantum dots and their applications”, Springer, 2017.
[5] A. Kitai, “Luminescent materials and applications”, Wiley, 2008.
[6] W. M. Yen, S. Shionoya, H. Yamamoto, “Phosphor handbook”, 2nd ed, Taylor & Francis, 2007.
[7] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, “Upconversion luminescent materials: Advances and applications”, Chem. Rev., 2015, 115, 395-465.
[8] J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging”, Chem. Soc. Rev., 2012, 41, 1323-1349.
[9] F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, “Luminescent nanomaterials for biological labelling”, Nanotechnology, 2006, 17, R1-R13.
[10] C. Feldmann, “Luminescent nanomaterials, Nanoscale, 2011, 3, 1947-1948.
[11] L. Q. Minh, W. Strek, T. K. Anh, K. Yu, “Luminescent nanomaterials”, Hindawi, 2007.
[12] C. Feldmann, T. Justel, C. R. Ronda, P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application”, Adv. Funct. Mater., 2003, 13, 511-516.
[13] A. S. Edelstein, R. C. Cammarata, “Nanomaterials: Synthesis, Properties and applications”, IOP Publishing, 1996.
[14] S. Logothetidis, “Nanostructured materials and their applications”, Springer, 2012.
[15] A. G. Davies, J. M. T. Thompson, “Advances in nanoengineering: Electronics, materials and assembly, Imperial College Press, 2007.
[16] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989.
[17] T. T. Huong, V. D. Tu, T. K. Anh, L.T. Vinh, L. Q. Minh, “Fabrication and characterization of YVO4:Eu3+ nanomaterials by the microwave technique”, J. Rare Earths, 2011, 29, 1137-1141.
[18] T. T. Huong, L. T. Vinh, H. T. Phuong, H. T. Khuyen, T. K. Anh, V. D. Tu, L. Q. Minh, “Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis”, J. Lumin., 2016, 173, 89-93.
[19] M. L. Cable, D. J. Levine, J. P. Kirby, H. B. Gray, A. Ponce “Luminescent Lanthanide Sensors”, Elsevier, 2011.
[20] F. Zhang, “Photon upconversion nanomaterials”, Springer, 2015.
[21] X. Huang, S. Han, W. Huang, X. Liu, “Enhancing solar cell efficiency: The search for luminescent materials as spectral converters”. Chem. Soc. Rev., 2013, 42, 173-201.
[22] M. V DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33.
[23] C. D. Geddes, “Reviews in Fluorescence”, Springer, 2015.
[24] J. K. R. Weber, J. J. Felten, B. Cho, P. C. Nordine, “Glass fibers of pure and erbium-or neodymium-doped yttria-alumina compositions”, Nature, 1998, 393, 769-771.
[25] J. M. Meruga, W. M. Cross, P. S. May, Q. A. Luu, G. A. Crawford, J. J Kellar, “Security printing of convert quick response codes using upconverting nanoparticle inks”, Nanotechnology, 2012, 23, 395201.
[26] A. Jablonski, “Efficiency of Anti-Stokes fluorescence in dyes”, 1933, 131, 839-840.
[27] E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging”, Nanoscale, 2013, 5, 11339-11361.
[28] P. A. Frantsuzov, R. A. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis”, Phys. Rev. B, 2005, 72, 155321.
[29] A. Sedlmeier, H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications”, Chem. Soc. Rev., 2015, 44, 1526-1560.
[30] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415.
[31] W. Feng, X. Zhu, F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications”, NPG Asia Mater., 2013, 5, e75.
[32] L. A. Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. G. Bunzli, A. Hauser, C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d–f–d complex”, Angew. Chem. Int. Ed., 2011, 50, 4108-4112.
[33] F. Auzel, “Upconversion and anti-Stokes processes with f and d Ions in solids”, Chem. Rev., 2004, 104, 139-173.
[34] V. V. Ovsyankin, P. P. Feofilov, “Mechanism of summation of electronic excitations in activated crystals”, J. Exp. Theor. Phys., 1966, 3, 494-497.
[35] S. Wu, H. J. Butt, “Near-infrared-sensitive materials based on upconverting nanoparticles”, Adv. Mater., 2016, 28, 1208-1226.
[36] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029.
[37] J. N. Liu, W. B. Bu, J. L. Shi, “Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics”, Acc. Chem. Res., 2015, 48, 1797-1805.
[38] L. D. Sun, Y. Fu. Wang, C. H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra”, Acc. Chem. Res., 2014, 47, 1001-1009.
[39] X. Li, F. Zhang, D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges”, Nano Today, 2013, 8, 643-676.
[40] H. Schafer, M. Haase, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829.
[41] S. Heer, K. Kompe, H. U. Gudel, M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals”, Adv. Mater., 2004, 16, 2102-2105.
[42] F. Wang, X. Liu, “Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles”, J. Am. Chem. Soc., 2008, 130, 5642-5643.
[43] X. Ye, J, E. Collins, Y. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, “Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly”, Proc. Natl. Acad. Sci. U.S.A., 2010, 28, 22430-22435.
[44] G. Chen, H. Qiu, P. N. Prasad, X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics”, Chem. Rev., 2014, 114, 5161-5214.
[45] J. M. F. van Dijk, M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions”, J. Chem. Phys., 1983, 78, 5317-5323.
[46] F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy”, Analyst, 2010, 135, 1839-1854.
[47] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications”, Biotechnol. Adv., 2012, 30, 1551-1561.
[48] X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles”, J. Am. Chem. Soc., 2013, 135, 12608-12611.
[49] D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging”, Nanoscale, 2015, 7, 190-197.
[50] Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect”, ACS Nano, 2013, 7, 7200-7206.
[51] S. Hao, G. Chen, C. Yang, C. Yang, W. Shao, W. Wei, Y. Liu, P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure”, Nanoscale, 2017, 9, 10633-10638.
[52] F. Lu, L. Yang, Y. Ding, J. J. Zhu, “Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy”, Adv. Funct. Mater., 2016, 26, 4778-4785.
[53] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles”, Adv. Mater., 2014, 26, 2831-2837.
[54] G. Chen, C. Yang, P. N. Prasad, “Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles”, Acc. Chem. Res., 2013, 46, 1474-1486.
[55] X. Bai, H. Song, G, Pan, Y, Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects”, J. Phys. Chem. C, 2007, 111, 13611-13617.
[56] V. K. Lamer, R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols”, J. Am. Chem. Soc., 1950, 72, 4847-4854.
[57] J. C. Boyer, F. Ventrone, L. A. Cuccia, J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors”, J. Am. Chem. Soc., 2006, 128, 7444-7445.
[58] H. X. Mai, Y. W. Zhang, L. D. Sun, C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy”, J. Phys. Chem. C, 2007, 111, 13730-13739.
[59] Z. Li, Y. Zhang, S. Jiang, “Multicolor core/shell-structured upconversion fluorescent nanoparticles”, Adv. Mater., 2008, 20, 4765-4769.
[60] A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals”, ACS Nano, 2012, 6, 2686-2692.
[61] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties”, J. Am. Chem. Soc., 2006, 128, 6426-6436.
[62] G. S. Yi, G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence”, Adv. Funct. Mater., 2006, 16, 2324-2329.
[63] J. Zhang, C. Mi, H. Wu, H. Huang, C. Mao, S. Xu, “Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection”, Anal. Biochem., 2012, 421, 673-679.
[64] M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence”, J. Alloy. Comp., 2009, 485, L24-L27.
[65] J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, S. Xu, “Controllable synthesis of NaYF4:Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans”, J. Mater. Chem., 2011, 21, 2632-2638.
[66] X. Wang, J. Zhuang, Q. Peng, Y. Li, “A general strategy for nanocrystal synthesis”, Nature, 2005, 437, 121-124.
[67] J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology”, Adv. Mater., 2005, 17, 2119-2123.
[68] M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling”, Langmuir, 2008, 24, 8864-8870.
[69] A. C. Yanes, A. S. Alonso, J. M. Ramos, J. del Castillo, V. D. Rodriguez, “Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: Structure and high ffficient UV up-conversion”, Adv. Funct. Mater., 2011, 21, 3136-3142.
[70] S. Gallini, J. R. Jurado, M. T. Colomer, “Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4”, Chem. Mater., 2005, 17, 4154-4161.
[71] X. Liu, J. Zhao, Y. Sun, K. Song, Y. Yu, C. Du, X. Kong, H. Zhang, “Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors”, Chem. Commun., 2009, 43, 6628–6630.
[72] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715.
[73] H. Q. Wang, T. Nann, “Monodisperse upconverting nanocrystals by microwave-assisted synthesis”, ACS Nano, 2009, 3, 3804-3808.
[74] C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, H. Zhang, “Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+,Tm3+ nanoparticles”, Nanoscale, 2013, 5, 8084-8089.
[75] Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo”, Am. Chem. Soc., 2011, 133, 17122-17125.
[76] Q. Lu, F. Gou, L. Sun, A. Li, L. Zhao, “Silica-/titania-coated, nanoparticles with improvement in upconversion luminescence induced by different thickness shells”, J. Appl. Phys., 2008, 103, 123533.
[77] V. Muhr, S. Wilhelm, T. Hirsch, O. S. Wolfbeis, “Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces”, Acc. Chem. Res., 2014, 47, 3481-3493.
[78] Y. F. Wang, L. D. Sun, J. W. Xiao, W. Feng, J. C. Zhou, J. Shen, C. H. Yan, “Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage”, Chem. Eur. J., 2012, 18, 5558-5564.
[79] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties”, Nanoscale, 2011, 3, 2003-2008.
[80] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. A. Engels, “Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation”, ACS Nano, 2011, 5, 3744-3757.
[81] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light”, Nat. Photonics, 2012, 6, 560-564.
[82] C. L. M. Hofmann, E. H. Eriksen, S. Fischer, B. S. Richards, P. Balling, J. C. Goldschmidt, “Enhanced upconversion in one-dimensional photonic crystals: A simulation-based assessment within realistic material and fabrication constraints”, Opt. Express, 2018, 26, 7537-7554.
[83] J. H. Lin, H. Y. Liou, C. D. Wang, C. Y. Tseng, C. T. Lee, Ting, C. C. Ting, H. C. Kan, C. C. Hsu, “Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate” ACS Photonics, 2015, 2, 530-536.
[84] H. Wang, Z. Yin, W. Xu, D. Zhou, S. Cui, X. Chen, H. Cui, H. Song, “Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals”, Nanoscale, 2016, 8, 10004-10009.
[85] Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals”, Chem. Commun., 2013, 49, 3781-3783.
[86] J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals”, J. Mater. Chem. C, 2013, 1, 6541-6546.
[87] W. Xu, X. Chen, H. Song, “Upconversion manipulation by local electromagnetic field”, Nano Today, 2017, 17, 54-78.
[88] B. Zhou, B. Shi, D. Jin, X. Liu, “Controlling upconversion nanocrystals for emerging applications”, Nat. Nanotechnol., 2015, 10, 924-936.

Chapter 2:
[1] M. V. DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33.
[2] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989.
[3] F. Zhang, “Photon upconversion nanomaterials”, Springer, 2015.
[4] F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping”, Nature, 2010, 463, 1061-1065.
[5] Y. Sui, K. Tao, Q. Tian, K. Sun, “Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals”, Phys. Chem. C, 2012, 116, 1732-1739.
[6] S. Wu, H. J. Butt, “Near-infrared-sensitive materials based on upconverting nanoparticles”, Adv. Mater., 2016, 28, 1208-1226.
[7] X. Ye, J, E. Collins, Y. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, “Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly”, Proc. Natl. Acad. Sci. U.S.A., 2010, 28, 22430-22435.
[8] S. Heer, K. Kompe, H. U. Gudel, M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals”, Adv. Mater., 2004, 16, 2102-2105.
[9] F. Wang, X. Liu, “Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles”, J. Am. Chem. Soc., 2008, 130, 5642-5643.
[10] Z. Li, Y. Zhang, S. Jiang, “Multicolor core/shell-structured upconversion fluorescent nanoparticles”, Adv. Mater., 2008, 20, 4765-4769.
[11] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties”, J. Am. Chem. Soc., 2006, 128, 6426-6436.
[12] G. S. Yi, G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence”, Adv. Funct. Mater., 2006, 16, 2324-2329.
[13] N. C. Dyck, F. C. J. M van Veggel, G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing”, ACS Appl. Mater. Interfaces, 2013, 5, 11661-11667.
[14] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415.
[15] L. D. Sun, Y. Fu. Wang, C. H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra”, Acc. Chem. Res., 2014, 47, 1001-1009.
[16] J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size”, Nanoscale, 2013, 5, 944-952.
[17] A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals”, ACS Nano, 2012, 6, 2686-2692.
[18] P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, D. H. Kim, “Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells”, RSC Adv., 2013, 3, 7718-7721.
[19] L. T. K. Giang, T. K. Anh, N. T. Binh, L. Q. Minh, “Fabrication and upconversion emission processes in nanoluminophores NaYF4:Er,Yb and NaYF4:Tm,Yb”, Int. J. Nanotechnol., 2015, 12, 538-547.
[20] L. T. K. Giang, L. Marciniak, D. Hreniak, T. K. Anh, L. Q. Minh, “Synthesis, structural characterization, and emission properties of NaYF4:Er3+/Yb3+ upconversion nanoluminophores”, J. Electron. Mater., 2016, 45, 4790-4795.
[21] A. Yin, Y. Zhang, L. Sun, C. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals”, Nanoscale, 2010, 2, 953-959.
[22] X. Bai, H. Song, G, Pan, Y, Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects”, J. Phys. Chem. C, 2007, 111, 13611-13617.
[23] B. Dong, H. Song, H. Yu, H. Zhang, R. Qin, X. Bai, G. Pan, S. Lu, F. Wang, L. Fan, Q. Dai, “Upconversion properties of Ln3+ doped NaYF4/polymer composite fibers prepared by electrospinning”, J. Phys. Chem. C, 2008, 112, 1435-1440.
[24] A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, J. Shen, “Polypeptide-functionalized NaYF4:Yb3+,Er3+ nanoparticles: Red emission biomarkers for high quality bioimaging using a 915 nm laser”, ACS Appl. Mater. Interfaces, 2014, 6, 18329-18336.
[25] R. Naccache, F. Vetrone, V. Mahalingam, L. A. Cuccia, J. A. Capobianco, “Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles”, Chem. Mater., 2009, 21, 717-723.

Chapter 3:
[1] H. Schafer, M. Haase, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829.
[2] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029.
[3] X. Chen, D. Peng, Q. Ju, F. Wang, “Photon upconversion in core-shell nanoparticles”, Chem. Soc. Rev., 2015, 44, 1318-1330.
[4] M. V DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33.
[5] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications”, Biotechnol. Adv., 2012, 30, 1551-1561.
[6] X. Li, F. Zhang, D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges”, Nano Today, 2013, 8, 643-676.
[7] W. Feng, X. Zhu, F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications”, NPG Asia Mater., 2013, 5, e75.
[8] G. Chen, H. Qiu, P. N. Prasad, X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics”, Chem. Rev., 2014, 114, 5161-5214.
[9] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715.
[10] A. Sedlmeier, H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications”, Chem. Soc. Rev., 2015, 44, 1526-1560.
[11] M. M. Lezhnina, T. Justel, H. Katker, D. U. Wiechert, U. H. Kynast, “Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells”, Adv. Funct. Mater., 2006, 16, 935-942.
[12] G. Yi, Y. Peng, Z. Gao, “Strong red-emitting near-infrared-to-visible upconversion
fluorescent nanoparticles”, Chem. Mater., 2011, 23, 2729-2734.
[13], H. Schafer, P. Ptacek, O. Zerzouf, M. Haase, “Synthesis and optical properties of KYF4/Yb,Er nanocrystals, and their surface modification with undoped KYF4”, Adv. Funct. Mater., 2008, 18, 2913-2918.
[14] Y. I. Park, J. H. Kim, K. T. Lee, K. S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S. I. Baik, H. Kim, S. P. Park, B. J. Park, Y. W. Kim, S. H. Lee, S. Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent”, Adv. Mater., 2009, 21, 4467-4471.
[15] F. Wang, J. Wang, X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles”, Angew. Chem. Int. Ed., 2010, 49, 7456-7460.
[16] G. S. Yi, G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence”, Chem. Mater., 2007, 19, 341-343.
[17] Y. F. Wang, L. D. Sun, J. W. Xiao, W. Feng, J. C. Zhou, J. Shen, C. H. Yan, “Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage”, Chem. Eur. J., 2012, 18, 5558-5564.
[18] G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, G. Han, “(-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging”, ACS Nano, 2012, 6, 8280-8287.
[19] F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, “Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties”, Nano Lett., 2012, 12, 2852-2858.
[20] Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C. K. Chen, R. S. Liu, X. Chen, F. Wang, X. Liu, “The effect of surface coating on energy migration-mediated upconversion”, J. Am. Chem. Soc., 2012, 134, 20849-20857.
[21] F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, J. A. Capobianco, “The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles”, Adv. Funct. Mater., 2009, 19, 2924-2929.
[22] P. Ghosh, J. Oliva, E. D. la Rosa, K. K. Haldar, D. Solis, A. Patra, “Enhancement of upconversion emission of LaPO4:Er@Yb core-shell nanoparticles/nanorods”, J. Phys. Chem. C, 2008, 112, 9650-9658.
[23] D. Yang, C. Li, G. Li, M. Shang, X. Kang, J. Lin, “Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification”, J. Mater. Chem., 2011, 21, 5923-5927.
[24] D. Chen, Y. Yu, F. Huang, H. Lin, P. Huang, A. Yang, Z. Wang, Y. Wang, “Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence”, J. Mater. Chem., 2012, 22, 2632-2640.
[25] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415.
[26] X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core−shell nanoparticles”, J. Am. Chem. Soc., 2013, 135, 12608-12611.
[27] D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging”, Nanoscale, 2015, 7, 190-197.
[28] Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect”, ACS Nano, 2013, 7, 7200-7206.
[29] S. Hao, G. Chen, C. Yang, C. Yang, W. Shao, W. Wei, Y. Liu, P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure”, Nanoscale, 2017, 9, 10633-10638.
[30] M. H. Chan, R. S. Liu, “Advanced sensing, imaging, and therapy nanoplatforms based on Nd3+-doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light”, Nanoscale, 2017, 9, 18153-18168.
[31] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles”, Adv. Mater., 2014, 26, 2831-2837.
[32] F. Lu, L. Yang, Y. Ding, J. J. Zhu, “Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy”, Adv. Funct. Mater., 2016, 26, 4778-4785.
[33] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. A. Engels, “Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation”, ACS Nano, 2011, 5, 3744-3757.
[34] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light”, Nat. Photonics, 2012, 6, 560-564.
[35] G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm”, ACS Nano, 2011, 5, 4981-4986.
[36] L. P. Qian, D. Yuan, G. S. Yi, G. M. Chow, “Critical shell thickness and emission enhancement of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles”, J. Phys. Chem. Lett., 2011, 2, 185-189.
[37] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 2000, 61, 3337-3346.
[38] Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, “Upconversion luminescence of -NaYF4:Yb3+,Er3+@-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence”, J. Phys. Chem. C. 2009, 113, 7164-7169.
[39] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties”, Nanoscale, 2011, 3, 2003-2008.
[40] X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed”, Opt. Mater. Express, 2013, 3, 989-999.
[41] S. Fischer, N. D. Bronstein, J. K. Swabeck, E. M. Chan, A. P. Alivisatos, “Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals”, Nano Lett., 2016, 16, 7241-7247.

Chapter 4:
[1] A. Muriano, K. N. A. Thayil, J. P. Salvador, P. L. Alvarez, S. Soria, R. Galve, M. P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures”, Sens. Actuator B-Chem., 2012, 174, 394-401.
[2] A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures”, Appl. Phys. Lett., 1996, 69, 4154-4156.
[3] R. Magnusson, S. S. Wang, “New principle for optical filters”, Appl. Phys. Lett., 1992, 61, 1022-1024.
[4] P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films”, Appl. Phys. Lett., 1997, 71, 1008-1010.
[5] G. L. Yurista, A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures”, Appl. Phys. Lett., 2000, 77, 1596-1598.
[6] D. Rosenbaltt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Electron., 1997, 33, 2038-2059.
[7] N. Bonod, J. Neauport, “Diffraction gratings: From principles to applications in high-intensity lasers”, 1996, 8, 1-44.
[8] M. Siltanen, S. Leivo, P. Voima, M. Kauranen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating”, Appl. Phys. Lett., 2007, 91, 111109.
[9] C. J. C. Hasnain, W. Yang, “High-contrast gratings for integrated optoelectronics”, Adv. Opt. Photonics, 2012, 4, 379-440.
[10] S. Collin, “Nanostructure arrays in free-space: Optical properties and applications”, Rep. Prog. Phys., 2014, 77, 126402.

[11] N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface”, Nat. Nanotechnol., 2007, 2, 515-520.
[12] J. H. Lin, C. Y. Tseng, C. T. Lee, H. C. Kan, C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating”, Opt. Express, 2013, 21, 24318-24325.
[13] J. H. Lin, C. Y. Tseng, C. T. Lee, J. F. Young, H. C. Kan, C. C. Hsu, “Strong guided mode resonant local field enhanced visible harmonic generation in an azopolymer resonant waveguide grating”, Opt. Express, 2014, 22, 2790-2797.
[14] J. H. Lin, H. Y. Liou, C. D. Wang, C. Y. Tseng, C. T. Lee, C. C. Ting, H. C. Kan, C. C. Hsu, “Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate”, ACS Photonics, 2015, 2, 530-536.
[15] R. Horvath, H. C. Pedersen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions”, Appl. Phys. Lett., 2002, 81, 2166-2168.
[16] R. Horvath, L. R. Lindvold, N. B. Larsen, “Reverse-symmetry waveguides: Theory and fabrication”, Appl. Phys. B, 2002, 74, 383-393.
[17] I. D. Block, L. L. Chan, B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric”, Sens. Actuator B-Chem., 2006, 120, 187-193.
[18] N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique”, Opt. Express, 2005, 13, 9605-9611.
[19] C. C. Liu, J. G. Li, S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices” RSC Adv., 2014, 4, 20262-20272.
[20] W. J. Kim, S. Kim, B. S. Lee, A. Kim, C. S. Ah, C. Huh, G. Y. Sung, W. S. Yun, “Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group”, Langmuir, 2009, 25, 11692-11697.
[21] D. Wang, A. Chen, S. H. Jang, H. L. Yip, A. K. Y. Jen, “Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups”, J. Mater. Chem., 2011, 21, 7269-7273.
[22] M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction” J. Opt. Soc. Am., 1981, 71, 811-818.
[23] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: Conical diffraction and antireflection designs”, Appl. Opt., 1994, 33, 2695-2706.
[24] Y. Wei, F. Lu, X. Zhang, D. Chen, “Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter”, J. Alloys Compd., 2007, 427, 333-340.
[25] G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals”, Opt. Express, 2008, 16, 11907-11914.
[26] H. Qiu, C. Yang, W. Shao, J. Damasco, X. Wang, H. Ågren, P. N. Prasad, G. Chen, “Enhanced upconversion luminescence in Yb3+/Tm3+-codoped fluoride active core/active shell/inert shell nanoparticles through directed energy migration”, Nanomaterials, 2014, 4, 55-68.
[27] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 2000, 61, 3337-3346.
[28] J. F. Suyver, A. Aebischer, S. G. Revilla, P. Gerner, H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence”, Phys. Rev. B, 2005, 71, 125123.
[29] J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence”, Nat. Nanotechnol., 2013, 8, 729-734.
[30] M. D. Wisser, S. Fischer, P. C. Maurer, N. D. Bronstein, S. Chu, A. P. Alivisatos, A. Salleo, J. A. Dionne, “Enhancing quantum yield via local symmetry distortion in lanthanide-based upconverting nanoparticles”, ACS Photonics, 2016, 3, 1523-1530.
[31] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715.
[32] B. Zhou, L. Tao, Y. H. Tsang, W. Jin, “Core–shell nanoarchitecture: A strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles”, J. Mater. Chem. C, 2013, 1, 4313-4318.
[33] G. Chen, H. Ågren, T. Y. Ohulchanskyy, P. N. Prasad, “Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications”, Chem. Soc. Rev., 2015, 44, 1680-1713.
[34] Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals”, Chem. Commun., 2013, 49, 3781-3783.
[35] J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, Y. Yang, “Upconversion emission enhancement of NaYF4:Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects”, J. Phys. Chem. C, 2014, 118, 17992-17999.
[36] P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, D. H. Kim, “Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells”, RSC Adv., 2013, 3, 7718-7721.
[37] J. He, W. Zheng, F. Ligmajer, C. F. Chan, Z. Bao, K. L. Wong, X. Chen, J. Hao, J. Dai, S. F. Yu, D. Y. Lei, “Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell–satellite nanostructures”, Light Sci. Appl., 2017, 6, 16217.
[38] W. Xu, X. Min, X. Chen, Y. Zhu, P. Zhou, S. Cui, S. Xu, L. Tao, H. Song, “Ag-SiO2-Er2O3 nanocomposites: Highly effective upconversion luminescence at high power excitation and high temperature”, Sci. Rep., 2014, 4, 5087.
[39] S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals”, Nano Lett., 2010, 10, 134-138.
[40] W. Zhang, F. Ding, S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas”, Adv. Mater., 2012, 24, 236-241.
[41] A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, J. Shen, “Polypeptide-functionalized NaYF4:Yb3+,Er3+ nanoparticles: Red emission biomarkers for high quality bioimaging using a 915 nm Laser”, ACS Appl. Mater. Interfaces, 2014, 6, 18329-18336.
[42] H. Dong, F. Yan, H. Ji, D. K. Y. Wong, H. Ju, “Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: Step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization”, Adv Funct Mater., 2010, 20, 1173-1179.
[43] L. Ye, R. Pelton, M. A. Brook, “Biotinylation of TiO2 nnanoparticles and their conjugation with streptavidin”, Langmuir, 2007, 23, 5630-5637.

Chapter 5:
[1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics”, CA: Cancer J. Clin., 2011, 61, 69-90.
[2] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P. Schlag, “Hyperthermia in combined treatment of cancer”, Lancet Oncol., 2002, 3, 487-497.
[3] H. X. Xia, X.Q. Yang, J. T. Song, J. Chen, M. Z. Zhang, D. M. Yan, L. Zhang, M. Y. Qin, L. Y. Bai, Y. D. Zhao, “Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy”, J. Mater. Chem. B, 2014, 2, 1945-1953.
[4] Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, J. Li, “Au nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property”, J. Phys. Chem. C, 2015, 119, 18527-18536.
[5] C. Wang, C. Xu, L. Xu, C. Sun, D. Yang, J. Xu, F. He, S. Gai, P. Yang, “A novel core-shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics”, J. Mater. Chem. B, 2018, 6, 2597-2607.
[6] C. W. Chen, P. H. Lee, Y. C. Chan, M. Hsiao, C. H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, R. S. Liu, “Plasmon-induced hyperthermia: Hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy”, J. Mater. Chem. B, 2015, 3, 8293-8302.
[7] M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, C. Xu, “Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy”, Adv. Mater., 2016, 28, 898-904.
[8] B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, J. Lin, “Poly(acrylic acid) modifi cation of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery”, Adv. Funct. Mater., 2015, 25, 4717-4729.
[9] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors”, Nano Lett., 2008, 8, 3834-3838.
[10] Z. Yi, W. Lu, H. Liu, S. Zeng, “High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution”, Nanoscale, 2015, 7, 542-550.
[11] M. Haase, H. Schäfer, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829.
[12] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029.
[13] M. Wang, C. C. Mi, W. X. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu, ACS Nano, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles” 2009, 3, 1580-1586.
[14] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989.
[15] Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, M. Qiao, H. Hu, Y. Liang, H. Zhu, “Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser”, Int. J. Nanomedicine, 2015, 10, 4747-4761.
[16] X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles”, Lasers Med. Sci., 2008, 23, 217-228.
[17] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy”, Nano Lett., 2005, 5, 709-711.
[18] M. A. Mackey, M. R. Ali, L. A. Austin, R. D. Near, M. A. El-Sayed, “The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments”, J. Phys. Chem. B, 2014, 118, 1319-1326.
[19] N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction”, Proc. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 11600-11605.
[20] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, “Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy”, Nano Lett., 2010, 10, 3318-3323.
[21] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials, 2012, 33, 2206-2214.
[22] X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods”, J. Am. Chem. Soc., 2006, 128, 2115-2120.
[23] H. Chen, L. Shao, Q. Li, J. Wang, “Gold nanorods and their plasmonic properties”, Chem. Soc. Rev., 2013, 42, 2679-2724.
[24] X. Huang, S. Neretina, M. A. El‐Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications”, Adv. Mater., 2009, 21, 4880-4910.
[25] A. M. Smith, M. C. Mancini, S. Nie, “Second window for in vivo imaging”, Nat. Nanotechnol., 2009, 4, 710-711.
[26] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, Y. Xia, “Gold nanostructures: Engineering their plasmonic properties for biomedical applications”, Chem. Soc. Rev., 2006, 35, 1084-1094.
[27] H. Yuan, A. M. Fales, T. V. Dinh, “TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance”, J. Am. Chem. Soc., 2012, 134, 11358-11361.
[28] L. Hou, D. Shi, S.-M. Tu, H. Z. Zhang, M. C. Hung, D. Ling, “Oral cancer progression and c-erbB-Z/neu proto-oncogene expression”, Cancer Lett., 1992, 65, 215-220.
[29] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots”, Nat. Biotechnol., 2003, 21, 41-46.
[30] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. C. Wang, “The shape transition of gold nanorods”, Langmuir, 1999, 15, 701-709.
[31] P. J. Huang, L. K. Chau, T. S. Yang, L. L. Tay, T. T. Lin, “Nanoaggregate-embedded beads as novel Raman labels for biodetection”, Adv. Funct. Mater., 2009, 19, 242-248.
[32] W. C. Wu, J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses”, Chem. Mater., 2015, 27, 2888-2894.
[33] R. M. Pasternack, S. R. Amy, Y. J. Chabal, “Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature”, Langmuir, 2008, 24, 12963-12971.
[34] F. Liu, F. Niu, N. Peng, Y. Su, Y. Yang, “Synthesis, characterization, and application of Fe3O4@SiO2–NH2 nanoparticles”, RSC Adv., 2015, 5, 18128-18136.
[35] L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy”, Angew. Chem. Int. Ed., 2011, 50, 7385-7390.
[36] S. C. Nguyen, Q. Zhang, K. Manthiram, X. Ye, J. P. Lomont, C. B. Harris, H. Weller, A. P. Alivisatos, “Study of heat transfer dynamics from gold nanorods to the environment via time resolved infrared spectroscopy”, ACS Nano, 2016, 10, 2144-2151
[37] X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y.Sun, F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature”, Nat. Commun., 2016, 7, 10437.
[38] F. Vetrone, R. Naccache, A. Zamarrón, A. J. D. L Fuente, F. S. Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Solé, J.A. Capobianco, “Temperature sensing using fluorescent nanothermometers”, ACS Nano, 2010, 4, 3254-3258.
[39] D. T. Klier, M. U. Kumke, “Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale”, RSC Adv., 2015, 5, 67149-67156.
[40] A. Dokala, S. Thakur, “Extracellular region of epidermal growth factor receptor: A potential target for anti-EGFR drug discovery”, Oncogene, 2017, 36, 2337-2344.
[41] M. W. Chan, Y. W. Huang, C. H. Frey, C. T. Kuo, D. Deatherage, H. Qin, A. S. Cheng, P. S. Yan, R. V. Davuluri, T. H. M. Huang, “Aberrant transforming growth factor β1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer”, Neoplasia, 2008, 10, 908-919.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊