|
Chapter 1: [1] J. C. G. Bunzli, C. Piguet, “Taking advantage of luminescent lanthanide ions”, Chem. Soc. Rev., 2005, 34, 1048-1077. [2] C. Ronda, “Luminescence: From theory to applications”, Wiley, 2008. [3] G. Blasse, B. C. Grabmaier, “Luminescent materials”, Springer, 1994. [4] R. S. Liu, “Phosphors, upconversion nano particles, quantum dots and their applications”, Springer, 2017. [5] A. Kitai, “Luminescent materials and applications”, Wiley, 2008. [6] W. M. Yen, S. Shionoya, H. Yamamoto, “Phosphor handbook”, 2nd ed, Taylor & Francis, 2007. [7] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, “Upconversion luminescent materials: Advances and applications”, Chem. Rev., 2015, 115, 395-465. [8] J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging”, Chem. Soc. Rev., 2012, 41, 1323-1349. [9] F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, “Luminescent nanomaterials for biological labelling”, Nanotechnology, 2006, 17, R1-R13. [10] C. Feldmann, “Luminescent nanomaterials, Nanoscale, 2011, 3, 1947-1948. [11] L. Q. Minh, W. Strek, T. K. Anh, K. Yu, “Luminescent nanomaterials”, Hindawi, 2007. [12] C. Feldmann, T. Justel, C. R. Ronda, P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application”, Adv. Funct. Mater., 2003, 13, 511-516. [13] A. S. Edelstein, R. C. Cammarata, “Nanomaterials: Synthesis, Properties and applications”, IOP Publishing, 1996. [14] S. Logothetidis, “Nanostructured materials and their applications”, Springer, 2012. [15] A. G. Davies, J. M. T. Thompson, “Advances in nanoengineering: Electronics, materials and assembly, Imperial College Press, 2007. [16] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989. [17] T. T. Huong, V. D. Tu, T. K. Anh, L.T. Vinh, L. Q. Minh, “Fabrication and characterization of YVO4:Eu3+ nanomaterials by the microwave technique”, J. Rare Earths, 2011, 29, 1137-1141. [18] T. T. Huong, L. T. Vinh, H. T. Phuong, H. T. Khuyen, T. K. Anh, V. D. Tu, L. Q. Minh, “Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis”, J. Lumin., 2016, 173, 89-93. [19] M. L. Cable, D. J. Levine, J. P. Kirby, H. B. Gray, A. Ponce “Luminescent Lanthanide Sensors”, Elsevier, 2011. [20] F. Zhang, “Photon upconversion nanomaterials”, Springer, 2015. [21] X. Huang, S. Han, W. Huang, X. Liu, “Enhancing solar cell efficiency: The search for luminescent materials as spectral converters”. Chem. Soc. Rev., 2013, 42, 173-201. [22] M. V DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33. [23] C. D. Geddes, “Reviews in Fluorescence”, Springer, 2015. [24] J. K. R. Weber, J. J. Felten, B. Cho, P. C. Nordine, “Glass fibers of pure and erbium-or neodymium-doped yttria-alumina compositions”, Nature, 1998, 393, 769-771. [25] J. M. Meruga, W. M. Cross, P. S. May, Q. A. Luu, G. A. Crawford, J. J Kellar, “Security printing of convert quick response codes using upconverting nanoparticle inks”, Nanotechnology, 2012, 23, 395201. [26] A. Jablonski, “Efficiency of Anti-Stokes fluorescence in dyes”, 1933, 131, 839-840. [27] E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging”, Nanoscale, 2013, 5, 11339-11361. [28] P. A. Frantsuzov, R. A. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis”, Phys. Rev. B, 2005, 72, 155321. [29] A. Sedlmeier, H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications”, Chem. Soc. Rev., 2015, 44, 1526-1560. [30] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415. [31] W. Feng, X. Zhu, F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications”, NPG Asia Mater., 2013, 5, e75. [32] L. A. Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. G. Bunzli, A. Hauser, C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d–f–d complex”, Angew. Chem. Int. Ed., 2011, 50, 4108-4112. [33] F. Auzel, “Upconversion and anti-Stokes processes with f and d Ions in solids”, Chem. Rev., 2004, 104, 139-173. [34] V. V. Ovsyankin, P. P. Feofilov, “Mechanism of summation of electronic excitations in activated crystals”, J. Exp. Theor. Phys., 1966, 3, 494-497. [35] S. Wu, H. J. Butt, “Near-infrared-sensitive materials based on upconverting nanoparticles”, Adv. Mater., 2016, 28, 1208-1226. [36] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029. [37] J. N. Liu, W. B. Bu, J. L. Shi, “Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics”, Acc. Chem. Res., 2015, 48, 1797-1805. [38] L. D. Sun, Y. Fu. Wang, C. H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra”, Acc. Chem. Res., 2014, 47, 1001-1009. [39] X. Li, F. Zhang, D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges”, Nano Today, 2013, 8, 643-676. [40] H. Schafer, M. Haase, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829. [41] S. Heer, K. Kompe, H. U. Gudel, M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals”, Adv. Mater., 2004, 16, 2102-2105. [42] F. Wang, X. Liu, “Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles”, J. Am. Chem. Soc., 2008, 130, 5642-5643. [43] X. Ye, J, E. Collins, Y. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, “Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly”, Proc. Natl. Acad. Sci. U.S.A., 2010, 28, 22430-22435. [44] G. Chen, H. Qiu, P. N. Prasad, X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics”, Chem. Rev., 2014, 114, 5161-5214. [45] J. M. F. van Dijk, M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions”, J. Chem. Phys., 1983, 78, 5317-5323. [46] F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy”, Analyst, 2010, 135, 1839-1854. [47] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications”, Biotechnol. Adv., 2012, 30, 1551-1561. [48] X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles”, J. Am. Chem. Soc., 2013, 135, 12608-12611. [49] D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging”, Nanoscale, 2015, 7, 190-197. [50] Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect”, ACS Nano, 2013, 7, 7200-7206. [51] S. Hao, G. Chen, C. Yang, C. Yang, W. Shao, W. Wei, Y. Liu, P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure”, Nanoscale, 2017, 9, 10633-10638. [52] F. Lu, L. Yang, Y. Ding, J. J. Zhu, “Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy”, Adv. Funct. Mater., 2016, 26, 4778-4785. [53] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles”, Adv. Mater., 2014, 26, 2831-2837. [54] G. Chen, C. Yang, P. N. Prasad, “Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles”, Acc. Chem. Res., 2013, 46, 1474-1486. [55] X. Bai, H. Song, G, Pan, Y, Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects”, J. Phys. Chem. C, 2007, 111, 13611-13617. [56] V. K. Lamer, R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols”, J. Am. Chem. Soc., 1950, 72, 4847-4854. [57] J. C. Boyer, F. Ventrone, L. A. Cuccia, J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors”, J. Am. Chem. Soc., 2006, 128, 7444-7445. [58] H. X. Mai, Y. W. Zhang, L. D. Sun, C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy”, J. Phys. Chem. C, 2007, 111, 13730-13739. [59] Z. Li, Y. Zhang, S. Jiang, “Multicolor core/shell-structured upconversion fluorescent nanoparticles”, Adv. Mater., 2008, 20, 4765-4769. [60] A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals”, ACS Nano, 2012, 6, 2686-2692. [61] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties”, J. Am. Chem. Soc., 2006, 128, 6426-6436. [62] G. S. Yi, G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence”, Adv. Funct. Mater., 2006, 16, 2324-2329. [63] J. Zhang, C. Mi, H. Wu, H. Huang, C. Mao, S. Xu, “Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection”, Anal. Biochem., 2012, 421, 673-679. [64] M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence”, J. Alloy. Comp., 2009, 485, L24-L27. [65] J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, S. Xu, “Controllable synthesis of NaYF4:Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans”, J. Mater. Chem., 2011, 21, 2632-2638. [66] X. Wang, J. Zhuang, Q. Peng, Y. Li, “A general strategy for nanocrystal synthesis”, Nature, 2005, 437, 121-124. [67] J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology”, Adv. Mater., 2005, 17, 2119-2123. [68] M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling”, Langmuir, 2008, 24, 8864-8870. [69] A. C. Yanes, A. S. Alonso, J. M. Ramos, J. del Castillo, V. D. Rodriguez, “Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: Structure and high ffficient UV up-conversion”, Adv. Funct. Mater., 2011, 21, 3136-3142. [70] S. Gallini, J. R. Jurado, M. T. Colomer, “Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4”, Chem. Mater., 2005, 17, 4154-4161. [71] X. Liu, J. Zhao, Y. Sun, K. Song, Y. Yu, C. Du, X. Kong, H. Zhang, “Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors”, Chem. Commun., 2009, 43, 6628–6630. [72] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715. [73] H. Q. Wang, T. Nann, “Monodisperse upconverting nanocrystals by microwave-assisted synthesis”, ACS Nano, 2009, 3, 3804-3808. [74] C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, H. Zhang, “Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+,Tm3+ nanoparticles”, Nanoscale, 2013, 5, 8084-8089. [75] Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo”, Am. Chem. Soc., 2011, 133, 17122-17125. [76] Q. Lu, F. Gou, L. Sun, A. Li, L. Zhao, “Silica-/titania-coated, nanoparticles with improvement in upconversion luminescence induced by different thickness shells”, J. Appl. Phys., 2008, 103, 123533. [77] V. Muhr, S. Wilhelm, T. Hirsch, O. S. Wolfbeis, “Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces”, Acc. Chem. Res., 2014, 47, 3481-3493. [78] Y. F. Wang, L. D. Sun, J. W. Xiao, W. Feng, J. C. Zhou, J. Shen, C. H. Yan, “Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage”, Chem. Eur. J., 2012, 18, 5558-5564. [79] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties”, Nanoscale, 2011, 3, 2003-2008. [80] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. A. Engels, “Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation”, ACS Nano, 2011, 5, 3744-3757. [81] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light”, Nat. Photonics, 2012, 6, 560-564. [82] C. L. M. Hofmann, E. H. Eriksen, S. Fischer, B. S. Richards, P. Balling, J. C. Goldschmidt, “Enhanced upconversion in one-dimensional photonic crystals: A simulation-based assessment within realistic material and fabrication constraints”, Opt. Express, 2018, 26, 7537-7554. [83] J. H. Lin, H. Y. Liou, C. D. Wang, C. Y. Tseng, C. T. Lee, Ting, C. C. Ting, H. C. Kan, C. C. Hsu, “Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate” ACS Photonics, 2015, 2, 530-536. [84] H. Wang, Z. Yin, W. Xu, D. Zhou, S. Cui, X. Chen, H. Cui, H. Song, “Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals”, Nanoscale, 2016, 8, 10004-10009. [85] Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals”, Chem. Commun., 2013, 49, 3781-3783. [86] J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals”, J. Mater. Chem. C, 2013, 1, 6541-6546. [87] W. Xu, X. Chen, H. Song, “Upconversion manipulation by local electromagnetic field”, Nano Today, 2017, 17, 54-78. [88] B. Zhou, B. Shi, D. Jin, X. Liu, “Controlling upconversion nanocrystals for emerging applications”, Nat. Nanotechnol., 2015, 10, 924-936.
Chapter 2: [1] M. V. DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33. [2] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989. [3] F. Zhang, “Photon upconversion nanomaterials”, Springer, 2015. [4] F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping”, Nature, 2010, 463, 1061-1065. [5] Y. Sui, K. Tao, Q. Tian, K. Sun, “Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals”, Phys. Chem. C, 2012, 116, 1732-1739. [6] S. Wu, H. J. Butt, “Near-infrared-sensitive materials based on upconverting nanoparticles”, Adv. Mater., 2016, 28, 1208-1226. [7] X. Ye, J, E. Collins, Y. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, “Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly”, Proc. Natl. Acad. Sci. U.S.A., 2010, 28, 22430-22435. [8] S. Heer, K. Kompe, H. U. Gudel, M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals”, Adv. Mater., 2004, 16, 2102-2105. [9] F. Wang, X. Liu, “Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles”, J. Am. Chem. Soc., 2008, 130, 5642-5643. [10] Z. Li, Y. Zhang, S. Jiang, “Multicolor core/shell-structured upconversion fluorescent nanoparticles”, Adv. Mater., 2008, 20, 4765-4769. [11] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties”, J. Am. Chem. Soc., 2006, 128, 6426-6436. [12] G. S. Yi, G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence”, Adv. Funct. Mater., 2006, 16, 2324-2329. [13] N. C. Dyck, F. C. J. M van Veggel, G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing”, ACS Appl. Mater. Interfaces, 2013, 5, 11661-11667. [14] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415. [15] L. D. Sun, Y. Fu. Wang, C. H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra”, Acc. Chem. Res., 2014, 47, 1001-1009. [16] J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size”, Nanoscale, 2013, 5, 944-952. [17] A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals”, ACS Nano, 2012, 6, 2686-2692. [18] P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, D. H. Kim, “Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells”, RSC Adv., 2013, 3, 7718-7721. [19] L. T. K. Giang, T. K. Anh, N. T. Binh, L. Q. Minh, “Fabrication and upconversion emission processes in nanoluminophores NaYF4:Er,Yb and NaYF4:Tm,Yb”, Int. J. Nanotechnol., 2015, 12, 538-547. [20] L. T. K. Giang, L. Marciniak, D. Hreniak, T. K. Anh, L. Q. Minh, “Synthesis, structural characterization, and emission properties of NaYF4:Er3+/Yb3+ upconversion nanoluminophores”, J. Electron. Mater., 2016, 45, 4790-4795. [21] A. Yin, Y. Zhang, L. Sun, C. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals”, Nanoscale, 2010, 2, 953-959. [22] X. Bai, H. Song, G, Pan, Y, Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects”, J. Phys. Chem. C, 2007, 111, 13611-13617. [23] B. Dong, H. Song, H. Yu, H. Zhang, R. Qin, X. Bai, G. Pan, S. Lu, F. Wang, L. Fan, Q. Dai, “Upconversion properties of Ln3+ doped NaYF4/polymer composite fibers prepared by electrospinning”, J. Phys. Chem. C, 2008, 112, 1435-1440. [24] A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, J. Shen, “Polypeptide-functionalized NaYF4:Yb3+,Er3+ nanoparticles: Red emission biomarkers for high quality bioimaging using a 915 nm laser”, ACS Appl. Mater. Interfaces, 2014, 6, 18329-18336. [25] R. Naccache, F. Vetrone, V. Mahalingam, L. A. Cuccia, J. A. Capobianco, “Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles”, Chem. Mater., 2009, 21, 717-723.
Chapter 3: [1] H. Schafer, M. Haase, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829. [2] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029. [3] X. Chen, D. Peng, Q. Ju, F. Wang, “Photon upconversion in core-shell nanoparticles”, Chem. Soc. Rev., 2015, 44, 1318-1330. [4] M. V DaCosta, S. Doughan, Y. Han, U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review”, Anal. Chim. Acta., 2014, 832, 1-33. [5] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications”, Biotechnol. Adv., 2012, 30, 1551-1561. [6] X. Li, F. Zhang, D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges”, Nano Today, 2013, 8, 643-676. [7] W. Feng, X. Zhu, F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications”, NPG Asia Mater., 2013, 5, e75. [8] G. Chen, H. Qiu, P. N. Prasad, X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics”, Chem. Rev., 2014, 114, 5161-5214. [9] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715. [10] A. Sedlmeier, H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications”, Chem. Soc. Rev., 2015, 44, 1526-1560. [11] M. M. Lezhnina, T. Justel, H. Katker, D. U. Wiechert, U. H. Kynast, “Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells”, Adv. Funct. Mater., 2006, 16, 935-942. [12] G. Yi, Y. Peng, Z. Gao, “Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles”, Chem. Mater., 2011, 23, 2729-2734. [13], H. Schafer, P. Ptacek, O. Zerzouf, M. Haase, “Synthesis and optical properties of KYF4/Yb,Er nanocrystals, and their surface modification with undoped KYF4”, Adv. Funct. Mater., 2008, 18, 2913-2918. [14] Y. I. Park, J. H. Kim, K. T. Lee, K. S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S. I. Baik, H. Kim, S. P. Park, B. J. Park, Y. W. Kim, S. H. Lee, S. Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent”, Adv. Mater., 2009, 21, 4467-4471. [15] F. Wang, J. Wang, X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles”, Angew. Chem. Int. Ed., 2010, 49, 7456-7460. [16] G. S. Yi, G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence”, Chem. Mater., 2007, 19, 341-343. [17] Y. F. Wang, L. D. Sun, J. W. Xiao, W. Feng, J. C. Zhou, J. Shen, C. H. Yan, “Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage”, Chem. Eur. J., 2012, 18, 5558-5564. [18] G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, G. Han, “(-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging”, ACS Nano, 2012, 6, 8280-8287. [19] F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, “Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties”, Nano Lett., 2012, 12, 2852-2858. [20] Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C. K. Chen, R. S. Liu, X. Chen, F. Wang, X. Liu, “The effect of surface coating on energy migration-mediated upconversion”, J. Am. Chem. Soc., 2012, 134, 20849-20857. [21] F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, J. A. Capobianco, “The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles”, Adv. Funct. Mater., 2009, 19, 2924-2929. [22] P. Ghosh, J. Oliva, E. D. la Rosa, K. K. Haldar, D. Solis, A. Patra, “Enhancement of upconversion emission of LaPO4:Er@Yb core-shell nanoparticles/nanorods”, J. Phys. Chem. C, 2008, 112, 9650-9658. [23] D. Yang, C. Li, G. Li, M. Shang, X. Kang, J. Lin, “Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification”, J. Mater. Chem., 2011, 21, 5923-5927. [24] D. Chen, Y. Yu, F. Huang, H. Lin, P. Huang, A. Yang, Z. Wang, Y. Wang, “Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence”, J. Mater. Chem., 2012, 22, 2632-2640. [25] W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, “Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection”, Chem. Soc. Rev., 2015, 44, 1379-1415. [26] X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core−shell nanoparticles”, J. Am. Chem. Soc., 2013, 135, 12608-12611. [27] D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging”, Nanoscale, 2015, 7, 190-197. [28] Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect”, ACS Nano, 2013, 7, 7200-7206. [29] S. Hao, G. Chen, C. Yang, C. Yang, W. Shao, W. Wei, Y. Liu, P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure”, Nanoscale, 2017, 9, 10633-10638. [30] M. H. Chan, R. S. Liu, “Advanced sensing, imaging, and therapy nanoplatforms based on Nd3+-doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light”, Nanoscale, 2017, 9, 18153-18168. [31] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles”, Adv. Mater., 2014, 26, 2831-2837. [32] F. Lu, L. Yang, Y. Ding, J. J. Zhu, “Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy”, Adv. Funct. Mater., 2016, 26, 4778-4785. [33] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. A. Engels, “Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation”, ACS Nano, 2011, 5, 3744-3757. [34] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light”, Nat. Photonics, 2012, 6, 560-564. [35] G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm”, ACS Nano, 2011, 5, 4981-4986. [36] L. P. Qian, D. Yuan, G. S. Yi, G. M. Chow, “Critical shell thickness and emission enhancement of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles”, J. Phys. Chem. Lett., 2011, 2, 185-189. [37] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 2000, 61, 3337-3346. [38] Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, “Upconversion luminescence of -NaYF4:Yb3+,Er3+@-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence”, J. Phys. Chem. C. 2009, 113, 7164-7169. [39] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties”, Nanoscale, 2011, 3, 2003-2008. [40] X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed”, Opt. Mater. Express, 2013, 3, 989-999. [41] S. Fischer, N. D. Bronstein, J. K. Swabeck, E. M. Chan, A. P. Alivisatos, “Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals”, Nano Lett., 2016, 16, 7241-7247.
Chapter 4: [1] A. Muriano, K. N. A. Thayil, J. P. Salvador, P. L. Alvarez, S. Soria, R. Galve, M. P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures”, Sens. Actuator B-Chem., 2012, 174, 394-401. [2] A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures”, Appl. Phys. Lett., 1996, 69, 4154-4156. [3] R. Magnusson, S. S. Wang, “New principle for optical filters”, Appl. Phys. Lett., 1992, 61, 1022-1024. [4] P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films”, Appl. Phys. Lett., 1997, 71, 1008-1010. [5] G. L. Yurista, A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures”, Appl. Phys. Lett., 2000, 77, 1596-1598. [6] D. Rosenbaltt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Electron., 1997, 33, 2038-2059. [7] N. Bonod, J. Neauport, “Diffraction gratings: From principles to applications in high-intensity lasers”, 1996, 8, 1-44. [8] M. Siltanen, S. Leivo, P. Voima, M. Kauranen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating”, Appl. Phys. Lett., 2007, 91, 111109. [9] C. J. C. Hasnain, W. Yang, “High-contrast gratings for integrated optoelectronics”, Adv. Opt. Photonics, 2012, 4, 379-440. [10] S. Collin, “Nanostructure arrays in free-space: Optical properties and applications”, Rep. Prog. Phys., 2014, 77, 126402.
[11] N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface”, Nat. Nanotechnol., 2007, 2, 515-520. [12] J. H. Lin, C. Y. Tseng, C. T. Lee, H. C. Kan, C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating”, Opt. Express, 2013, 21, 24318-24325. [13] J. H. Lin, C. Y. Tseng, C. T. Lee, J. F. Young, H. C. Kan, C. C. Hsu, “Strong guided mode resonant local field enhanced visible harmonic generation in an azopolymer resonant waveguide grating”, Opt. Express, 2014, 22, 2790-2797. [14] J. H. Lin, H. Y. Liou, C. D. Wang, C. Y. Tseng, C. T. Lee, C. C. Ting, H. C. Kan, C. C. Hsu, “Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate”, ACS Photonics, 2015, 2, 530-536. [15] R. Horvath, H. C. Pedersen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions”, Appl. Phys. Lett., 2002, 81, 2166-2168. [16] R. Horvath, L. R. Lindvold, N. B. Larsen, “Reverse-symmetry waveguides: Theory and fabrication”, Appl. Phys. B, 2002, 74, 383-393. [17] I. D. Block, L. L. Chan, B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric”, Sens. Actuator B-Chem., 2006, 120, 187-193. [18] N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique”, Opt. Express, 2005, 13, 9605-9611. [19] C. C. Liu, J. G. Li, S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices” RSC Adv., 2014, 4, 20262-20272. [20] W. J. Kim, S. Kim, B. S. Lee, A. Kim, C. S. Ah, C. Huh, G. Y. Sung, W. S. Yun, “Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group”, Langmuir, 2009, 25, 11692-11697. [21] D. Wang, A. Chen, S. H. Jang, H. L. Yip, A. K. Y. Jen, “Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups”, J. Mater. Chem., 2011, 21, 7269-7273. [22] M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction” J. Opt. Soc. Am., 1981, 71, 811-818. [23] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: Conical diffraction and antireflection designs”, Appl. Opt., 1994, 33, 2695-2706. [24] Y. Wei, F. Lu, X. Zhang, D. Chen, “Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter”, J. Alloys Compd., 2007, 427, 333-340. [25] G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals”, Opt. Express, 2008, 16, 11907-11914. [26] H. Qiu, C. Yang, W. Shao, J. Damasco, X. Wang, H. Ågren, P. N. Prasad, G. Chen, “Enhanced upconversion luminescence in Yb3+/Tm3+-codoped fluoride active core/active shell/inert shell nanoparticles through directed energy migration”, Nanomaterials, 2014, 4, 55-68. [27] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 2000, 61, 3337-3346. [28] J. F. Suyver, A. Aebischer, S. G. Revilla, P. Gerner, H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence”, Phys. Rev. B, 2005, 71, 125123. [29] J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence”, Nat. Nanotechnol., 2013, 8, 729-734. [30] M. D. Wisser, S. Fischer, P. C. Maurer, N. D. Bronstein, S. Chu, A. P. Alivisatos, A. Salleo, J. A. Dionne, “Enhancing quantum yield via local symmetry distortion in lanthanide-based upconverting nanoparticles”, ACS Photonics, 2016, 3, 1523-1530. [31] S. Han, R. Deng, X. Xie, X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles”, Angew. Chem. Int. Ed., 2014, 53, 11702-11715. [32] B. Zhou, L. Tao, Y. H. Tsang, W. Jin, “Core–shell nanoarchitecture: A strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles”, J. Mater. Chem. C, 2013, 1, 4313-4318. [33] G. Chen, H. Ågren, T. Y. Ohulchanskyy, P. N. Prasad, “Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications”, Chem. Soc. Rev., 2015, 44, 1680-1713. [34] Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals”, Chem. Commun., 2013, 49, 3781-3783. [35] J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, Y. Yang, “Upconversion emission enhancement of NaYF4:Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects”, J. Phys. Chem. C, 2014, 118, 17992-17999. [36] P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, D. H. Kim, “Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells”, RSC Adv., 2013, 3, 7718-7721. [37] J. He, W. Zheng, F. Ligmajer, C. F. Chan, Z. Bao, K. L. Wong, X. Chen, J. Hao, J. Dai, S. F. Yu, D. Y. Lei, “Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell–satellite nanostructures”, Light Sci. Appl., 2017, 6, 16217. [38] W. Xu, X. Min, X. Chen, Y. Zhu, P. Zhou, S. Cui, S. Xu, L. Tao, H. Song, “Ag-SiO2-Er2O3 nanocomposites: Highly effective upconversion luminescence at high power excitation and high temperature”, Sci. Rep., 2014, 4, 5087. [39] S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals”, Nano Lett., 2010, 10, 134-138. [40] W. Zhang, F. Ding, S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas”, Adv. Mater., 2012, 24, 236-241. [41] A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, J. Shen, “Polypeptide-functionalized NaYF4:Yb3+,Er3+ nanoparticles: Red emission biomarkers for high quality bioimaging using a 915 nm Laser”, ACS Appl. Mater. Interfaces, 2014, 6, 18329-18336. [42] H. Dong, F. Yan, H. Ji, D. K. Y. Wong, H. Ju, “Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: Step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization”, Adv Funct Mater., 2010, 20, 1173-1179. [43] L. Ye, R. Pelton, M. A. Brook, “Biotinylation of TiO2 nnanoparticles and their conjugation with streptavidin”, Langmuir, 2007, 23, 5630-5637.
Chapter 5: [1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics”, CA: Cancer J. Clin., 2011, 61, 69-90. [2] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P. Schlag, “Hyperthermia in combined treatment of cancer”, Lancet Oncol., 2002, 3, 487-497. [3] H. X. Xia, X.Q. Yang, J. T. Song, J. Chen, M. Z. Zhang, D. M. Yan, L. Zhang, M. Y. Qin, L. Y. Bai, Y. D. Zhao, “Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy”, J. Mater. Chem. B, 2014, 2, 1945-1953. [4] Y. Song, G. Liu, X. Dong, J. Wang, W. Yu, J. Li, “Au nanorods@NaGdF4/Yb3+,Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property”, J. Phys. Chem. C, 2015, 119, 18527-18536. [5] C. Wang, C. Xu, L. Xu, C. Sun, D. Yang, J. Xu, F. He, S. Gai, P. Yang, “A novel core-shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics”, J. Mater. Chem. B, 2018, 6, 2597-2607. [6] C. W. Chen, P. H. Lee, Y. C. Chan, M. Hsiao, C. H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, R. S. Liu, “Plasmon-induced hyperthermia: Hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy”, J. Mater. Chem. B, 2015, 3, 8293-8302. [7] M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, C. Xu, “Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy”, Adv. Mater., 2016, 28, 898-904. [8] B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, J. Lin, “Poly(acrylic acid) modifi cation of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery”, Adv. Funct. Mater., 2015, 25, 4717-4729. [9] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors”, Nano Lett., 2008, 8, 3834-3838. [10] Z. Yi, W. Lu, H. Liu, S. Zeng, “High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution”, Nanoscale, 2015, 7, 542-550. [11] M. Haase, H. Schäfer, “Upconverting nanoparticles”, Angew. Chem. Int. Ed., 2011, 50, 5808-5829. [12] C. Chen, C. Li, Z. Shi, “Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication”, Adv. Sci., 2016, 3, 1600029. [13] M. Wang, C. C. Mi, W. X. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu, ACS Nano, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles” 2009, 3, 1580-1586. [14] F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals”, Chem. Soc. Rev., 2009, 38, 976-989. [15] Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, M. Qiao, H. Hu, Y. Liang, H. Zhu, “Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser”, Int. J. Nanomedicine, 2015, 10, 4747-4761. [16] X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles”, Lasers Med. Sci., 2008, 23, 217-228. [17] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy”, Nano Lett., 2005, 5, 709-711. [18] M. A. Mackey, M. R. Ali, L. A. Austin, R. D. Near, M. A. El-Sayed, “The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments”, J. Phys. Chem. B, 2014, 118, 1319-1326. [19] N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction”, Proc. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 11600-11605. [20] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, “Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy”, Nano Lett., 2010, 10, 3318-3323. [21] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials, 2012, 33, 2206-2214. [22] X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods”, J. Am. Chem. Soc., 2006, 128, 2115-2120. [23] H. Chen, L. Shao, Q. Li, J. Wang, “Gold nanorods and their plasmonic properties”, Chem. Soc. Rev., 2013, 42, 2679-2724. [24] X. Huang, S. Neretina, M. A. El‐Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications”, Adv. Mater., 2009, 21, 4880-4910. [25] A. M. Smith, M. C. Mancini, S. Nie, “Second window for in vivo imaging”, Nat. Nanotechnol., 2009, 4, 710-711. [26] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, Y. Xia, “Gold nanostructures: Engineering their plasmonic properties for biomedical applications”, Chem. Soc. Rev., 2006, 35, 1084-1094. [27] H. Yuan, A. M. Fales, T. V. Dinh, “TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance”, J. Am. Chem. Soc., 2012, 134, 11358-11361. [28] L. Hou, D. Shi, S.-M. Tu, H. Z. Zhang, M. C. Hung, D. Ling, “Oral cancer progression and c-erbB-Z/neu proto-oncogene expression”, Cancer Lett., 1992, 65, 215-220. [29] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots”, Nat. Biotechnol., 2003, 21, 41-46. [30] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. C. Wang, “The shape transition of gold nanorods”, Langmuir, 1999, 15, 701-709. [31] P. J. Huang, L. K. Chau, T. S. Yang, L. L. Tay, T. T. Lin, “Nanoaggregate-embedded beads as novel Raman labels for biodetection”, Adv. Funct. Mater., 2009, 19, 242-248. [32] W. C. Wu, J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses”, Chem. Mater., 2015, 27, 2888-2894. [33] R. M. Pasternack, S. R. Amy, Y. J. Chabal, “Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature”, Langmuir, 2008, 24, 12963-12971. [34] F. Liu, F. Niu, N. Peng, Y. Su, Y. Yang, “Synthesis, characterization, and application of Fe3O4@SiO2–NH2 nanoparticles”, RSC Adv., 2015, 5, 18128-18136. [35] L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy”, Angew. Chem. Int. Ed., 2011, 50, 7385-7390. [36] S. C. Nguyen, Q. Zhang, K. Manthiram, X. Ye, J. P. Lomont, C. B. Harris, H. Weller, A. P. Alivisatos, “Study of heat transfer dynamics from gold nanorods to the environment via time resolved infrared spectroscopy”, ACS Nano, 2016, 10, 2144-2151 [37] X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y.Sun, F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature”, Nat. Commun., 2016, 7, 10437. [38] F. Vetrone, R. Naccache, A. Zamarrón, A. J. D. L Fuente, F. S. Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Solé, J.A. Capobianco, “Temperature sensing using fluorescent nanothermometers”, ACS Nano, 2010, 4, 3254-3258. [39] D. T. Klier, M. U. Kumke, “Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale”, RSC Adv., 2015, 5, 67149-67156. [40] A. Dokala, S. Thakur, “Extracellular region of epidermal growth factor receptor: A potential target for anti-EGFR drug discovery”, Oncogene, 2017, 36, 2337-2344. [41] M. W. Chan, Y. W. Huang, C. H. Frey, C. T. Kuo, D. Deatherage, H. Qin, A. S. Cheng, P. S. Yan, R. V. Davuluri, T. H. M. Huang, “Aberrant transforming growth factor β1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer”, Neoplasia, 2008, 10, 908-919.
|