跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲緯
研究生(外文):LIN, CHE-WEI
論文名稱:含苯并噻吩,苯并呋喃及醯胺之聚二噻吩一吡咯電致變色材料合成與光譜電化學性質探討
論文名稱(外文):Synthesis and spectroelectrochemcial charactierizations of benzothiophene, benzofuran and amide-based poly(2,5-dithienylpyrrole)s
指導教授:吳知易
指導教授(外文):WU, TZI-YI
口試委員:陳雲郭仲文林淵淙李立鼎吳知易
口試委員(外文):CHEN, YUNGUO, ZHONG-WENLIN, YUAN-CHUNGLEE, LI-TINGWU, TZI-YI
口試日期:2018-07-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:198
中文關鍵詞:電致變色導電高分子光學對比光譜電化學
外文關鍵詞:Electrochromismconducting polymeroptical contrastspectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功的將2-benzofuran、2-benzothiophene、3-benzothiophene以亞胺基連結於聚二噻吩一吡咯上,分別命名為PBF、PBT及PDA,以及將furan-2-carboxamide以醯胺基連結於聚二噻吩一吡咯上,命名為PFC。將四種陽極材料進行光電化學性質之探討,包含吸收光譜圖、光學對比值、轉換時間、顏色變化及著色效率。在單電極測試中,陽極材料以PFC高分子薄膜於液態 ([EPI+][TFSI-])的電解質中,波長位於900 nm處具有最大穿透差值60.5%,顏色變化為月黃色(-0.6 V)、黃褐色(0.2 V)、灰綠色(0.6 V)和灰藍色(1.4 V)。四種陽極材料(PBF、PBT、PDA及PFC)與不同之陰極材料(PProDOT-Bz2、PProDOT-Et2及PProDOT-Ph)搭配組成元件進行光譜電化學性質測試。組成元件後,以PFC/PProDOT-Et2元件位於波長580 nm下,具有最大穿透差值71.1%,著色效率達616.53 cm2/C,顏色變化為淡黃色(-0.6 V)、黃綠色(-0.2 V)、葉綠色(0.2 V)、暗青色(0.6 V)、藍色(1 V)、深藍色(1.4 V),並擁有快速的轉換時間0.88秒(τc)與0.86秒(τb),光學穩定性也有96%,且光學記憶的著色態變化率只有4%與去色態變化率只有0.5%。本研究證實單電極陽極與陰極組成元件後,不僅是增加了顏色的多變性,還增加光學對比值、光學穩定性及著色效率,並且縮短轉換時間。
2-benzofuran, 2-benzothiophene, and 3-benzothiophene units are incorporated as the pendants of polydithienylpyrroles by an imine linkage group, which are denominated as PBF, PBT, and PDA, respectively. On another aspect, a furan-2-carboxamide unit is incorporated to the side chain of polydithienylpyrrole, which is denominated as PFC. The optical and electrochemical properties of four anodically coloring materials, such as UV/Vis spectra, optical contrast, switching time, color variations, and coloration effiency are characterized. PFC film shows high ∆Tmax (60.5% at 900 nm) in an ionic liquid ([EPI+][TFSI-]) solution, and electrochromic behaviors reveal that PFC film displays moon yellow at -0.6 V, yellowish brown at 0.2 V, greyish green at 0.6 V, and greyish blue at 1.4 V. Electrochromic devices (ECDs) are fabricated using four anodically coloring polymers (PBF, PBT, PDA, and PFC) and three cathodically coloring polymers (PProDOT-Bz2, PProDOT-Et2, and PProDOT-Ph). PFC/PProDOT-Et2 ECD shows high ∆Tmax (71.1% at 580 nm) and high coloration efficiency (616.53 cm2/C at 580 nm), and electrochromic behaviors reveal that PFC/PProDOT-Et2 ECD shows light yellow at -0.6 V, yellowish green at -0.2 V, foliage green at 0.2 V, dark cyan at 0.6 V, blue at 1 V, and dark blue at 1.4 V. Moreover, PFC/PProDOT-Et2 ECD shows fast switching time (0.88 and 0.86 s for c and b, respectively), high optical stability (96% after the 100th switching cycles), and satisfactory optical memory (4% at colored state and 0.5% at bleached state), demonstrating that ECDs show not only multicolor electrochromisms but also higher optical contrast, higher optical stability, higher coloration efficiency, and shorter switching time than those of anodically coloring polymer films.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1-1前言 1
1-2研究動機 3
1-3電致變色簡介 5
1-3-1導電原理 6
1-3-2電致變色基本參數 8
1-3-3電致變色材料應用 10
1-3-4電致變色元件結構 12
第二章 文獻回顧 13
第三章 實驗步驟 24
3-1研究架構 24
3-2實驗藥品 25
3-3實驗儀器 26
3-4 ITO玻璃清洗 26
3-5實驗裝置 27
3-5-1電化學聚合 27
3-5-2薄膜在液態環境下的電化學與光學性質測試 28
3-5-3元件的電化學與光學性質測試 29
3-6實驗合成 30
3-6-1陽極材料SNS系列導電高分子單體合成 30
3-6-2陰極材料ProDOT系列導電高分子單體合成 42
3-6-3離子液體合成 48
3-7高分子電解質膜的製備 50
第四章 結果與討論 51
4-1導電高分子電化學性質 51
4-1-1導電高分子陽極之電化學聚合 51
4-1-2導電高分子陰極之電化學聚合 57
4-1-3定電位聚合法 59
4-1-4導電高分子薄膜分析 60
4-2 四種陽極材料導電高分子薄膜在液態下之光學測試 62
4-2-1導電高分子薄膜In-situ UV-Vis光學吸收值 63
4-2-2導電高分子薄膜之穿透度變化及穩定性 77
4-2-3探討四種高分子薄膜之穿透度變化、穩定性、轉換時間及著色效率 86
4-3 SNS系列薄膜組成元件之光學性質探討 95
4-3-1十二種元件In-situ UV-Vis光學吸收度 96
4-3-2十二種元件之穿透度 132
4-3-3十二種元件之穿透度、穩定性、轉換時間及著色效率 157
4-3-4十二種元件之多圈循環電化學穩定性 166
4-3-5十二種元件之光學記憶效應 173
4-3-6本研究SNS系列電致變色與文獻比較 179
第五章 結論 180
參考文獻 181


1.Deb, S. A novel electrophotographic system. Applied Optics 1969, 8, 192-195.
2.Steinkopf, W.; Leitsmann, R.; Hofmann, K.H. Studien in der thiophenreihe. Lvii. über α‐polythienyle. Justus Liebigs Annalen der Chemie 1941, 546, 180-199.
3.Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene. Journal of the Chemical Society, Chemical Communications 1977, 578-580.
4.McLeod, G.G.; Mahboubian-Jones, M.; Pethrick, R.A.; Watson, S.D.; Truong, N.; Galin, J.; Francois, J. Synthesis, electrochemical polymerization and properties of poly (2,5-di-(2-thienyl)-pyrrole). Polymer 1986, 27, 455-458.
5.Cihaner, A.; Algı, F. An electrochromic and fluorescent polymer based on 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole. Journal of Electroanalytical Chemistry 2008, 614, 101-106.
6.Yildiz, E.; Camurlu, P.; Tanyeli, C.; Akhmedov, I.; Toppare, L. A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. Journal of Electroanalytical Chemistry 2008, 612, 247-256.
7.Ak, M.; Tanyeli, C.; Akhmedov, I.M.; Toppare, L. Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene. Thin Solid Films 2008, 516, 4334-4341.
8.Krompiec, M.; Krompiec, S.; Ignasiak, H.; Łapkowski, M.; Kuś, P.; Stanek, Ł.; Penczek, R.; Lis, S.; Staniński, K.; Sajewicz, M. Synthesis and electropolymerization of 3,5-dithienylpyridines, their complexes and N-methylpyridinium cations. Synthetic Metals 2008, 158, 831-838.
9.Kaya, İ.; Yıldırım, M.; Aydın, A. A new approach to the schiff base-substituted oligophenols: The electrochromic application of 2-[3-thienylmethylene] aminophenol based co-polythiophenes. Organic Electronics 2011, 12, 210-218.
10.Soganci, T.; Ak, M.; Giziroglu, E.; Söyleyici, H.C. Smart window application of a new hydrazide type SNS derivative. RSC Advances 2016, 6, 1744-1749.
11.Mo, D.; Zhou, W.; Ma, X.; Xu, J. Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate. Electrochimica Acta 2015, 155, 29-37.
12.Benahmed-Gasmi, A.; Frère, P.; Roncali, J. Difuryl polyenes as precursors of highly conducting electrogenerated conjugated polymers. Journal of Electroanalytical Chemistry 1996, 406, 231-234.
13.Gaupp, C.L.; Welsh, D.M.; Reynolds, J.R. Poly(ProDOT‐Et2): A high‐contrast, high‐coloration efficiency electrochromic polymer. Macromolecular rapid communications 2002, 23, 885-889.
14.Gunbas, G.; Toppare, L. Electrochromic conjugated polyheterocycles and derivatives—highlights from the last decade towards realization of long lived aspirations. Chemical Communications 2012, 48, 1083-1101.
15.游哲嘉. 含亞胺之聚二噻吩一吡咯電致變色材料合成、光學及電化學性質探討. 國立雲林科技大學, 2017.
16.Platt, J.R. Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics 1961, 34, 862-863.
17.Azens, A.; Avendano, E.; Granqvist, C. In Electrochromic materials and their applications in foil-based devices, Advanced Optical Devices, Technologies, and Medical Applications, 2003; International Society for Optics and Photonics: pp 185-196.
18.Granqvist, C. Electrochromism and smart window design. Solid State Ionics 1992, 53, 479-489.
19.Dyer, A.L.; Craig, M.R.; Babiarz, J.E.; Kiyak, K.; Reynolds, J.R. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes. Macromolecules 2010, 43, 4460-4467.
20.Dyer, A.L.; Grenier, C.R.; Reynolds, J.R. A poly (3,4‐alkylenedioxythiophene) electrochromic variable optical attenuator with near‐infrared reflectivity tuned independently of the visible region. Advanced Functional Materials 2007, 17, 1480-1486.
21.Camurlu, P. Polypyrrole derivatives for electrochromic applications. RSC Adv. 2014, 4, 55832-55845.
22.Argun, A.A.; Aubert, P.-H.; Thompson, B.C.; Schwendeman, I.; Gaupp, C.L.; Hwang, J.; Pinto, N.J.; Tanner, D.B.; MacDiarmid, A.G.; Reynolds, J.R. Multicolored electrochromism in polymers: Structures and devices. Chemistry of Materials 2004, 16, 4401-4412.
23.Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chemical reviews 2010, 110, 268-320.
24.Svensson, J.; Granqvist, C. Electrochromic coatings for “smart windows”. Solar energy materials 1985, 12, 391-402.
25.Lampert, C.M. Electrochromic materials and devices for energy efficient windows. Solar Energy Materials 1984, 11, 1-27.
26.Svensson, J.; Granqvist, C. Electrochromic tungsten oxide films for energy efficient windows. Solar energy materials 1984, 11, 29-34.
27.Kallaos, J. Indicators for a sustainable built environment, CIB 2010 World Congress Proceedings. Edited by Peter Barrett, Dilanthi Amaratunga, Richard Haigh, Kaushal Keraminiyage and Chaminda Pathirage. The Lowry, Salford Quays-United Kingdom, 2010; pp 10-13.
28.電致變色智能防眩目後視鏡鏡片
http://www.Zh-kv.Com/kaivo/products.Asp?Id=25.
29.飛機智能窗戶 https://zhuanlan.Zhihu.Com/p/29732091.
30.東莞市渲染顏料科技有限公司 http://www.dg-xuanran.com/
31.電致變色膜 http://ellight.Net/electrochromic.
32.Mortimer, R.J. Organic electrochromic materials. Electrochimica Acta 1999, 44, 2971-2981.
33.Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18.
34.Cai, S.; Wen, H.; Wang, S.; Niu, H.; Wang, C.; Jiang, X.; Bai, X.; Wang, W. Electrochromic polymers electrochemically polymerized from 2,5–dithienylpyrrole with different triarylamine units: Synthesis, characterization and optoelectrochemical properties. Electrochimica Acta 2017, 228, 332-342.
35.Gu, H.; Lin, K.; Liu, H.; Jian, N.; Qu, K.; Yu, H.; Wei, J.; Chen, S.; Xu, J. Synthesis and electropolymerization of furan end−capped dibenzothiophene/dibenzofuran and electrochromic properties of their polymers. International Journal of Electrochemical Science 2017, 12, 5000-5011.
36.Hwang, J.; Son, J.I.; Shim, Y.-B. Electrochromic and electrochemical properties of 3-pyridinyl and 1,10-phenanthroline bearing poly(2,5-di(2-thienyl)-1H-pyrrole) derivatives. Solar Energy Materials and Solar Cells 2010, 94, 1286-1292.
37.Wu, X.; Wang, W.; Li, B.; Hou, Y.; Niu, H.; Zhang, Y.; Wang, S.; Bai, X. Synthesis and electrochromic, acidochromic properties of schiff bases containing triphenylamine and thiophene units. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 140, 398-406.
38.Camurlu, P.; Bicil, Z.; Gültekin, C.; Karagoren, N. Novel ferrocene derivatized poly (2,5-dithienylpyrrole)s: Optoelectronic properties, electrochemical copolymerization. Electrochimica Acta 2012, 63, 245-250.
39.Söyleyici, H.C.; Ak, M.; Şahin, Y.; Demikol, D.O.; Timur, S. New class of 2,5-di (2-thienyl)pyrrole compounds and novel optical properties of its conducting polymer. Materials Chemistry and Physics 2013, 142, 303-310.
40.Soganci, T.; Soyleyici, S.; Soyleyici, H.C.; Ak, M. High contrast electrochromic polymer and copolymer materials based on amide-substituted poly(dithienyl pyrrole). Journal of The Electrochemical Society 2017, 164, H11-H20.
41.Sikder, B.K. A step towards the processability of insoluble or partially soluble functional and structural variants of polymers based on 3,4-alkylenedioxythiophene. RSC Advances 2016, 6, 107776-107784.
42.Welsh, D.M.; Kumar, A.; Meijer, E.; Reynolds, J.R. Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4‐propylenedioxythiophene)derivatives. Advanced Materials 1999, 11, 1379-1382.
43.Gaupp, C.L.; Welsh, D.M.; Rauh, R.D.; Reynolds, J.R. Composite coloration efficiency measurements of electrochromic polymers based on 3, 4-alkylenedioxythiophenes. Chemistry of Materials 2002, 14, 3964-3970.
44.Sönmez, G.; Schwendeman, I.; Schottland, P.; Zong, K.; Reynolds, J.R. N-substituted poly (3, 4-propylenedioxypyrrole)s: High gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules 2003, 36, 639-647.
45.Krishnamoorthy, K.; Kanungo, M.; Contractor, A.; Kumar, A. Electrochromic polymer based on a rigid cyanobiphenyl substituted 3, 4-ethylenedioxythiophene. Synthetic metals 2001, 124, 471-475.
46.Karabay, B.; Pekel, L.C.; Cihaner, A. A pure blue to highly transmissive electrochromic polymer based on poly (3, 4-propylenedioxyselenophene) with a high optical contrast ratio. Macromolecules 2015, 48, 1352-1357.
47.Welsh, D.M.; Kloeppner, L.J.; Madrigal, L.; Pinto, M.R.; Thompson, B.C.; Schanze, K.S.; Abboud, K.A.; Powell, D.; Reynolds, J.R. Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules 2002, 35, 6517-6525.
48.Fernicola, A.; Panero, S.; Scrosati, B. Proton-conducting membranes based on protic ionic liquids. Journal of Power Sources 2008, 178, 591-595.
49.Sim, L.N.; Majid, S.R.; Arof, A.K. Characteristics of PEMA/PVDF-HFP blend polymeric gel films incorporated with lithium triflate salt in electrochromic device. Solid State Ionics 2012, 209–210, 15-23.
50.Chang, K.-H.; Wang, H.P.; Wu, T.-Y.; Sun, I.-W. Optical and electrochromic characterizations of four 2, 5-dithienylpyrrole-based conducting polymer films. Electrochimica Acta 2014, 119, 225-235.
51.Ayranci, R.; Ak, M. Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate. New Journal of Chemistry 2016, 40, 8053-8059.
52.Varis, S.; Ak, M.; Tanyeli, C.; Akhmedov, I.M.; Toppare, L. A soluble and multichromic conducting polythiophene derivative. European polymer journal 2006, 42, 2352-2360.
53.Cihaner, A.; Algı, F. A processable rainbow mimic fluorescent polymer and its unprecedented coloration efficiency in electrochromic device. Electrochimica Acta 2008, 53, 2574-2578.
54.Soganci, T.; Gumusay, O.; Soyleyici, H.C.; Ak, M. Synthesis of highly branched conducting polymer architecture for electrochromic applications. Polymer 2018, 134, 187-195.
55.Soganci, T.; Soyleyici, S.; Soyleyici, H.C.; Ak, M. Optoelectrochromic characterization and smart windows application of bi-functional amid substituted thienyl pyrrole derivative. Polymer 2017, 118, 40-48.
56.Wu, T.-Y.; Li, J.-L. Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Advances 2016, 6, 15988-15998.
57.Camurlu, P.; Gültekin, C. A comprehensive study on utilization of N-substituted poly (2,5-dithienylpyrrole) derivatives in electrochromic devices. Solar Energy Materials and Solar Cells 2012, 107, 142-147.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊