跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:安登特
研究生(外文):Siddhant Laxman Amrutwar
論文名稱:高速鋼離子氮化對於陰極電弧沉積AlCrSiN薄膜之機械性質與衝擊疲勞性能影響
論文名稱(外文):Effect of Plasma Nitriding Pretreatment on the Mechanical Properties & Fatigue Impact Resistance of AlCrSiN Coated High Speed Steels Synthesized by a Cathodic Arc Deposition Process
指導教授:張銀祐
指導教授(外文):CHANG, YIN-YU
口試委員:張銀祐吳宛玉鄭芳松
口試委員(外文):CHANG, YIN-YUWU, WANYUCHENG, FANG-SUNG
口試日期:2019-01-23
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:134
中文關鍵詞:雙相處理離子滲氮硬塗層工具鋼硬質薄膜
外文關鍵詞:Duplex treatmentplasma nitridinghard coatingtool steels
相關次數:
  • 被引用被引用:1
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
在金屬工業和大規模生產部門的時代,對高效機械傳動部件的需求和需求不斷增加,這需要在兩個或多個部件之間的特定接觸表面上具有高負載維持和承載能力。 高速鋼是高合金工具鋼,即使在高溫下也能保持硬度。 高速工具鋼這個詞的名字主要是因為它們能夠以高切削速度加工材料。
在壓鑄模具中廣泛使用AISI H13工具鋼,因為它是熱作模具鋼組之一,具有良好的耐腐蝕性和高淬透性。 為了改善工具和模具的性能。 和表面處理。 薄膜沉積是目前最常用的表面處理方法之一。
物理氣相沉積(PVD)是用於將材料作為薄膜沉積到基板上的最廣泛使用的技術。 從金屬,半導體材料到最複雜的光學薄膜疊層,PVD是最常見的沉積方法,以獲得優異的機械性能,高硬度,耐高溫性,耐腐蝕性和抗氧化性。雙相處理,即離子體氮化,然後進行陰極電弧蒸發,用於加強AlCrSiN薄膜與H13工具鋼的附著。 首先通過離子滲氮在H13鋼樣品上形成氮化物層,然後使用陰極電弧蒸發在氮化後H13鋼的表面上沉積CrN過渡層,以延長大規模生產中的模塑模具的壽命並防止薄膜失效。
在本研究中,通過陰極電弧蒸發合成梯度和AlCrSiN薄膜。 在沉積之前,首先通過離子體氮化在H13鋼樣品上形成氮化物層。 在AlCrSiN的沉積過程中,CrN作為中間層沉積,以增強薄膜和氮化基材之間的附著強度。 通過控制溫度和大氣中N2 / H2的混合物。 離子氮化處理後的AlCrSiN薄膜工具鋼具有不同的微觀結構和機械性能。 採用特徵X光能量分散光譜儀(EDS)測量元素成分分析和場發射掃描電子顯微鏡(FE-SEM)觀察沉積薄膜的微觀結構,採用X光繞射分析儀(XRD)觀察薄膜結構。 使用納米壓痕和微克氏硬度測量薄膜的硬度。
為了評估薄膜的抗衝擊斷裂性,使用循環加載裝置進行沖擊試驗(200K,300K和400K次),其中碳化鎢壓頭作為衝擊探針在室溫和高溫(~500℃)下進行。 結果表明,由於梯度硬度支持,雙相處理薄膜的附著強度和耐磨性顯著增加。 離子滲氮和硬質薄膜的組合是為了在大規模生產中延長成型模具和金屬鍛模的壽命.
In the era of metal industries and mass production sectors there are continuously increasing the demand and huge need for a highly efficient mechanical transmission components that requires high load sustaining and bearing capacity on the particular contact surfaces between two or more parts. High speed steel is highly alloyed tool steel capable of maintaining hardness even at elevated temperature. The word high speed tool steels are so named primarily because of their ability to machine materials at high cutting speeds. Widely used AISI H13 tool steel in the die casting molds as it’s among one of the hot-working die steel group and it has good corrosion resisting with high hardenability properties. In order to improve the properties of tools and molds. And the surface treatment. Thin film deposition is one of the most common surface treatment methods available today.
Physical vapor deposition (PVD) is the most widely used technology for depositing materials as a thin film onto a substrate. From metals, to semiconductor materials, to the most complicated optical film stacks, PVD is the most common deposition method to obtain excellent mechanical properties, high hardness, high temperature resistance, corrosion resistance and oxidation resistance.
A duplex treatment, i.e. plasma nitriding followed by cathodic arc evaporation, is used to strengthen the bonding of AlCrSiN coatings to H13 Tool steels. A nitride layer is first formed on H13 steel samples by plasma nitriding and then the CrN transition layer is prepared on the surface of the nitrided H13 steels using cathodic arc evaporation to extend the life time of molding dies in mass production and to protect from delamination of coatings.
In this study, gradient and AlCrSiN Coatings were synthesized by cathodic-arc evaporation. Before deposition a nitride layer is first formed on H13 steel samples by plasma nitriding. The plasma nitriding process is carried out in industrial furnace with the proper parameters like process temperature, nitrogen/hydrogen ratio and voltage with duty cycle. During the coating process of AlCrSiN, AlCrN was deposited as an interlayer to enhance adhesion strength between the coatings and nitrided substrates. By controlling the temperature and mixture of N2/H2 at atmosphere. The plasma nitrided duplex treated AlCrSiN coated tool steels possessed different microstructures and mechanical properties. The microstructure of the deposited coatings were investigated by field emission scanning electron microscope (FE-SEM) equipped with an energy-dispersive X-ray analysis spectrometer (EDS), Glancing angle X-ray diffraction was used to characterize the microstructure and phase identification of the films. The hardness of coatings was evaluated using nanoindention and Vickers hardness measurement.
To evaluate the impact fracture resistance of the coatings, an impact test (200K, 300K and 400K times) was performed using a cyclic loading device with a tungsten carbide indenter as an impact probe at room temperature and high temperature (500°C).the impact fatigue results shows for AlCrSiN coated sample at room temperature after 400K of impacts that the surface has no any iron signal however cohesive failure can be found on the surface of AlCrSiN sample. The PN+AlCrSiN coated samples shows better wear performance even after 400K of impacts and there is no any kind of surface failure can be seen. The high temperature impact test for AlCrSiN coated sample resist the impacts of 200K, after that the surface showed iron signals, but in case of PN+AlCrSiN there is no any iron signal even after 200K of impacts at high temperature. That means PN+AlCrSiN sample shows the significant change because of pre-treated nitrided process which supports the substrate surface from any external applied loads. The results show that the adhesion strength and wear resistance for duplex-treated coatings increase significantly due to a gradient-hardness support. The combination of plasma nitriding and hard coatings may increase the life of molding dies and metal forging dies in mass production.

Chinese Abstract....................................................................i
English Abstract...................................................................ii
Acknowledgement...................................................................iv
Content.............................................................................v
Table Caption......................................................................ix
Figure Caption......................................................................x
Chapter-1 Introduction..............................................................1
1.1 Preface.........................................................................1
1.2 Motivation......................................................................2
1.3 Reseach Purpose.................................................................2
Chapter-2 Litreature Review.........................................................3
2.1 Stages of Heat Treatment........................................................3
2.2 Phase Diagram.............................................................. ....4
2.3 Alloying Element................................................................6
2.4.Types of Heat Treatment.........................................................8
2.5 Case Hardening..................................................................9

2.5.1 Carburizing.............................................................11
2.5.2 Cyaniding....................................................................13
2.5.3 Nitriding..........................................................15
2.5.3.1 Microstructure of nitrided layer at different process time.............16
2.5.3.2 Microhardness of Nitrided samples......................................18
2.5.3.3 Compound and Diffusion Layer.................................19
2.5.3.4 Influence of N2/H2 ratio...............................................21
2.5.3.5 Active Screen Vs. Conventional DC Plasma Nitriding.....................22
2.5.3.6 Advantages of Plasma Nitriding.........................................24
2.6 Thin Film Coating Technology...................................................25
2.6.1 Deposition of Thin Films..................................................25
2.7 Principle of Cathodic Arc Evaporation Process..................................27
2.8 Advantages and Dis-advantages of Cathodic Arc Evaporation......................29
2.9 Troubleshooting on shortcoming of CAE......................................30
2.9.1 Macropartcle Filtering................................................31
2.10 Mechanism of Film Growth..................................................32
2.11Structure Zone Diagram of thin film deposition.................................34
2.12 Mechanism of Thin Films.......................................................36
2.13 AlCrN and AlTiN...........................................................39
2.14 Effect of Silicon (Si) on AlCrN coated tool...............................44
2.14.1 Residual Stress and Hardness Comparision.............................54
2.15 Influence of Interlayer on thin films....................................56
2.16 Damage in Dies...........................................................59
2.17 Development of thin films by Duplex Treatment............................60
Chapter 3 Experimental Methods & Procedures........................................73
3.1 Experimental Flow-Chart........................................................75
3.2 Plasma Nitriding Experimental Method...........................................76
3.2.1 Working Principle............................................................76
3.2.2 Experimental Procedure.......................................................76
3.3 Thin Film Design & Experimental Method.........................................79
3.3.1 Preparation and Coating Steps............................................79
3.4 Thin Film Microstructure analysis..............................................83
3.4.1 Field Emission Scanning Electron microscope (FE-SEM).....................83
3.4.2 Energy Dispersive Spectrometer (EDS).........................................85
3.5.Analysis of thin film Mechanical Properties....................................88
3.5.1 Rockwell Indentation.....................................................88
3.5.2 Vickers Indentation Testing Equipment....................................90
3.5.3 Nanoindentation Machine......................................................91
3.5.4 Impact Fatigue test..........................................................93

Chapter 4 Results & Discussion.....................................................94
4.1 Thin film analyses.............................................................94
4.1.1 Composition analyses of the AlCrSiN coatings.............................94
4.1.2 Glancing angle XRD analyses..................................................97
4.2 Mechanical Properties analyses................................................102
4.2.1 Rockwell Indentation analyses..........................................102
4.2.2 Film Hardness measurement..................................................104
4.2.3 Nanoindentation analyses...................................................105
4.2.4 Analyses of Impact Fatigue test............................................109
Chapter 5 Conclusion..............................................................115
References........................................................................117
Extended Abstract.................................................................130

[1]Kaylan Das, J. Alphonsa, Manojit Ghosh, J.Ghanshyam, Ramakrishna Rane, S. Mukherjee, 2017, “Influence of pretreatment on surface behaviour of duplex plasma treated AISI H13 tool steel”, Surface and Interfaces, 8, pp. 206-213, retrieved from
https://www.sciencedirect.com/science/article/pii/S2468023017300743

[2]Shicai Yang, Kevin Cooke, Hailin Sun, Xiaoying Li, Kaijie Lin, Hanshan Dong,2013, “Development of advanced duplex surface systems by combining CrAlN multilayer coatings with plasma nitrided steel substrates”, Surface & Coatings Technology, 236, pp. 2-7, Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897213006749

[3]P.L.Ge, M.D. Bao, H.J. Hang, K. You, X.P.Liu, 2013, “Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating”, Surface & Coatings Technology, 229, pp.146-150, retrieved from https://www.sciencedirect.com/science/article/pii/S0257897212007773

[4]Yin-Yu Chang, Meng-Chun Cai, 2018, “Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets”, Surface & Coatings Technology, 01, pp.077, Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897218300926

[5]Yin-Yu Chang, Da-Yung Wang, 2007, “Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process”, Surface & Coatings Technology, 201, pp.6699-6701, Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897206010437

[6]J. Walkowicz, J.Smolik, J.Tacikowski, 1993, “Optimization of nitrided case structure in composite layers created by duplex treatment on the basis of PVD coating adhesion measurement”, Surface & Coatings Technology, 116-119, pp. 370-379, https://www.sciencedirect.com/science/article/pii/S0257897299000791

[7]Tomas Polcar, Albano Cavaleiro, 2011, “High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation”, Materials Chemistry and Physics, 129, pp.195-201, Retrieved from https://www.sciencedirect.com/science/article/pii/S025405841100294X

[8]Yoshiyasu Nanjo, Kenichi Okazaki, Eisuke Sentoku, Yoshiro Iwai,2016, “Evaluation of the distribution of the strength properties in AlCrSiN gradient coating by a micro slurry-jet erosion (MSE) method”, Surface & Coatings Technology, 291, pp.172-178, Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897216300962

[9]Stan Veprek, Maritza J.G, Veprek-Heijman, 2008, “Industrial applications of superhard nanocomposite coatings”, Surface & Coatings Technology, 202, pp.5063-5073, Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897208004064

[10]Foundation of materials science and engineering fifth SI edition, William Smith, Javed Hashmi

[11]The science and engineering of materials SI edition, Donald, R.Askeland, Pradeep P.Fulay, Wendelin J. Wright

[12]L.C.F. Canale, J. Vatavuk, G.E Totten, 2014, “Introduction to steel Heat Treatment”, 12, pp.3-37, retrieved from https://www.sciencedirect.com/science/article/pii/B9780080965321012024

[13]Bozidar Liscic, Hans M. Tensi, Lauralice C. F. Canale, George E. Totten, Quenching Theory and Technology second edition

[14]J.L Smith, G.M.Russel, S.C.Bhatia, Heat treatment of metals, volume 2

[15]Michael J. Schneider, the Timken Company, Madhu S. Chatterjee, Bodycote, 1991, “Introduction to Surface Hardening of Steels*”, Heat Treating, 4, pp.259-267, Retrieved from https://www.asminternational.org/documents/10192/22533690/5344G_Sample_BuyNow.pdf/96e9ae44-b6a1-420c-abf5-ee32a98280d5

[16]Heat Treatment of metals by B.Zakharov

[17]B. Edenhofer, D. Joritz, M. Rink, K. Voges, 2015, “Carburizing of steels” Thermochemical Surface Engineering of Steels, pp.485-553, retrieved from https://www.sciencedirect.com/science/article/pii/B9780857095923500136?via%3Dihub

[18]M.M.A., 2017, Carburizing: A Method of Case Hardening of Steel, Comprehensive Materials Finishing, 2, pp. 71-106

[19]ASM International. An Introduction to Nitriding, Retrieved from https://www.asminternational.org/documents/10192/1849770/06950G_Chapter_1.pdf

[20]M.F. Yan, Y.Q. Wu, R.L. Liu, M. Yang, L.N. Tang, 2013, “Microstructure and mechanical properties of the modified layer obtained by low temperature plasma nitriding of nanocrystallized 18Ni maraging steel”, Material and Design,47, pp.575-580, Retrieved from https://www.sciencedirect.com/science/article/pii/S0261306912007650

[21]M.F. Yang, B.F. Chen, B. Li, 2018, “Microstructure and mechanical properties from an attractive combination of plasma nitriding and secondary hardening of M50 steel”, Applied surface science,455, pp.1-7, Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433218311863

[22]M. Berg, C.V. Budtz-Jorgensen, H. Reitz, K.O. Schweitz, J. Chevallier, P. Kringhoj, J. Bottiger, 2000, “On plasma nitriding of steels”, Surface and coatings technology, 124,pp.25-31, retrieved from https://www.sciencedirect.com/science/article/pii/S0257897299004727

[23]Wang Liang, “Surface modification of AISI 304 austenitic stainless steel by plasma nitriding”, Applied Surface Science, 211, pp.308-314, retrieved from https://www.sciencedirect.com/science/article/pii/S0169433203002605

[24]E. Menthe, K.-T. Rie, J.W. Schultze, S. Simson, 1995, “Structure and properties of plasma-nitrided stainless steel”, Surface and coatings technology, 74-75, pp.412-416 retrieved from https://www.sciencedirect.com/science/article/pii/0257897295082468

[25]C.E. Pinedo, W.A. Monteiro, 2001, “Surface hardening by plasma nitriding on high chromium alloy steel”, Material Science, 20, pp.147-149 retrieved from, https://www.ipen.br/biblioteca/2001/08240.pdf

[26]MAJ Somers, “Development of compound layer and diffusion zone during nitriding and nitrocarburizing of iron and steel”, Comprehensive materials Processing, Vol 12.

[27]H. Aghajani, M. Torshizi, M. Soltanieh, 2017, “A new model for growth mechanism of nitride layers in plasma nitriding of AISI H11 hot work tool steel”, Vacuum, 141, pp.97-102 https://www.sciencedirect.com/science/article/pii/S0042207X16310910

[28]Y.Sun, T.Bell, 1991, “Plasma Surface Engineering of low alloy steel”, materials science and engineering, Vol 140, pp. 419-434 https://www.sciencedirect.com/science/article/abs/pii/092150939190458Y

[29]R.Mohammadzadeh, A.Akbari, M.Drouet, 2014, “Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2–H2 gas compositions”, Surface & Coatings Technology, 258, pp.566-573 https://www.sciencedirect.com/science/article/pii/S0257897214007464.

[30]Kaijie Lin, Xiaoying Li, Yong Sun, Xia Luo, Hanshan Dong, 2014, “Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells”, International journal of hydrogen energy, volume 39, pp.21470-21479 https://www.sciencedirect.com/science/article/pii/S0360319914011586

[31]Z.Xu, F.F. Xiong, 2017, “Chapter 2 Plasma Nitriding”, Plasma surface metallurgy

[32]Handbook of deposition technology for films and coatings, Science, Applications and technology, 2010, pages 1-31

[33]B.K. Tay, Z.W. Zhao, D.H.C. Chua, 2006, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique”, Material Science and engineering, Volume 52, Issue 1-3, 30 may 2006, pages 1-48 https://www.sciencedirect.com/science/article/pii/S0927796X06000271

[34]Handbook of deposition technology for films and coatings, Science, Applications and technology, 2010, pages 1-24

[35]B.K. Tay, Z.W. Zhao, D.H.C. Chua, 2006, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique”, Materials Science and Engineering: R: Reports, 52, pp. 1-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S0927796X06000271

[36]Cathodic-Arc and Thermal-Evaporation Deposition, Reference Module in Materials Science and Materials Engineering, Comprehensive Materials Processing Volume 4, 2014, Pages 3-55

[37]F. Sanchette, C. Ducros, T.Schmitt, P. Steyer, A. Billard, 2011, “Nanostructured hard coatings deposited by cathodic arc deposition: From concepts to applications”, surface & coatings technology, 205, pp. 5444-5453 https://www.sciencedirect.com/science/article/pii/S0257897211006177

[38]W.C. Lang, J.Q. Xiao, J. Gong, C. Sun, R.F. Huang, L.S. Wen, 2010, “Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition”, Vacuum 84, pp.1111-1117 https://www.sciencedirect.com/science/article/pii/S0042207X10000618

[39]N.M. Mustapha, R.P. Howson, 2001, “Reactive filtered arc evaporation”, Vacuum60, pp.631-368 https://www.sciencedirect.com/science/article/pii/S0042207X00004255

[40]Yinghe Ma, chunzhi Gonh, Xiubo Tian, Paul K.Chu, 2017, “Imaging and motion of cathode group spots during pulse-enhanced vacuum arc evaporation”, Vacuum 139, pp.37-43 https://www.sciencedirect.com/science/article/pii/S0042207X16307606

[41]Hirofumi Takikawa, 2006, “review cathodic arc deposition for preparing droplet-free thin films”, Vacuum https://ieeexplore.ieee.org/document/4194935

[42]Meidong Huang, Guoqiang Lin, Yanhui Zhao, Chao Sun, Lishi Wen, Chuang Dong,2003, “Macro-particle reduction mechanism in biased arc ion plating of TiN”, Surface and Coatings Technology 176, pp. 109-114 https://www.sciencedirect.com/science/article/pii/S0257897203000173

[43]Qiwen Fan, Yinghui Du, Rong Zhang, Guoji Xu,2013, “Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc”, Nuclear Instruments and Methods in Physics Research 708, pp.78-82 https://www.sciencedirect.com/science/article/pii/S0168900213000648

[44]I.Petrov, P.B.Barna, L.Hultman, J.E. Greene, 2003, “Microstructural evolution during film growth”, vacuum science and technology A 21(5) http://users.mrl.illinois.edu/petrov/JVA0S117Review.pdf

[45]Andre Anders, 2010, “A structure zone diagram including plasma-based deposition and ion etching”, Thin solid films 518, pp.4087-4090 https://www.sciencedirect.com/science/article/pii/S0040609009018288

[46]K.Bobzin, T.Brogelmann, R.H. Brugnara, N.C.Kruppe, 2015, “CrN/AlN and CrN/AlN/Al2O3 coatings deposited by pulsed cathodic arc for aluminium die casting applications”, Surface & Coatings Technology 284, pp.222-229 https://www.sciencedirect.com/science/article/pii/S0257897215004880

[47]K.Bobzin, T.Brogelmann, N.C.Kruppe, M.Arghavani, J.Mayer, T.E.Weirich, 2017, “Plastic deformation behaviour of nanostructured CrN/AlN multilayer coatings deposited by hybrid dc MS/HPPMS”, Surface & Coatings Technology 332, pp.253-261 https://www.sciencedirect.com/science/article/pii/S0257897217309301

[48]Y. X. Ou, J. Lin, S. Tong, H .L. Che, W. D. Sproul, M. K. Lei, 2015, “Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering”, Applied Surface Science 351, pp.332-343 https://www.sciencedirect.com/science/article/pii/S0169433215012295

[49]J.Creus, H.Idrissi, H.Mazille, F. Sanchette, P. Jacquot, 1998, “Improvement of the corrosion resistance of CrN coated steel by an interlayer”, Surface & Coatings Technology 107, pp.183-190 https://www.sciencedirect.com/science/article/pii/S025789729800646X

[50]C. Mendibide, P. Steyer, J. Fontaine, P. Goudeau, 2006, “Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings — An explanation”, Surface & Coatings Technology 201, pp.4119-4124 https://www.sciencedirect.com/science/article/pii/S0257897206008243

[51]Sang Yul Lee, Gwang Seok Kim, Jun Hee Hahn, 2004, “Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings”, Surface & Coatings Technology 177-178, pp.426-433 https://www.sciencedirect.com/science/article/pii/S0257897203010284

[52]Li Chen, Yong Du, S. Q. Wang, Jia Li, 2007, “A comparative research on physical and mechanical properties of (Ti, Al) N and (Cr, Al) N PVD coatings with high Al content”, International Journal of Refractory Metals & Hard Materials 25, pp.400-404 https://www.sciencedirect.com/science/article/pii/S0263436806000990

[53]O. Banakh, P.E. Schmid, R. Sanjines, F. Levy, 2003, “High-temperature oxidation resistance of Cr1yxAlxN thin films deposited by reactive magnetron sputtering”, Surface & Coatings Technology 163-164, pp.57-61 https://wenku.baidu.com/view/64e7e04e767f5acfa1c7cdf7.html

[54]Jin Qiaoling, Wang Haidou, Li Guolu, Zhang Jianjun, Liu Jinna, 2017, “Microstructures and Mechanical Properties of TiN/CrN Multilayer Films”, Rare Metal Materials and Engineering 46, pp.2857-2862 https://www.sciencedirect.com/science/article/pii/S1875537218300201

[55]B.S. Kim, G.S Kim, S.Y Lee, B.Y Lee, 2008, “Effects of Al target power on the mechanical and oxidation resistance of the CrN/AlN multilayer coatings”, Surface & Coatings Technology 202, pp.5526-5529 https://www.sciencedirect.com/science/article/pii/S0257897208004969

[56]Jianliang Lin, John J. Moore, Jun Wang, William D. Sproul, 2011, “High temperature oxidation behaviour of CrN/AlN superlattice films”, Thin Solid Films 519, pp.2402-2408 https://www.sciencedirect.com/science/article/pii/S0040609010015786

[57]M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, 2004, “Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method”, Surface and Coatings Technology 177 –178,pp. 627-630 https://www.sciencedirect.com/science/article/pii/S025789720300937X

[58]J.L. Endrino, G.S. fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar,Galindo, J.M. Albella, J.F. Marco, 2007, “Oxidation tuning in AlCrN coatings”, Surface Coatings & Technology 201, pp. 4505-4511 https://www.sciencedirect.com/science/article/pii/S0257897206009996

[59]Seog-Young Yoon, Kwang O Lee, Sung Soo Kang, Kwang Ho Kim, 2002, “Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique” materials Processing Technology 130-131, pp. 260-265 https://www.sciencedirect.com/science/article/pii/S092401360200746X

[60]W. Kalss, A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, 2006, “Modern coatings in high performance cutting applications”, International Journal of Refractory Metals & Hard Materials 24, pp.399-404 https://www.sciencedirect.com/science/article/pii/S0263436805001708

[61]J. Vetter, E. Lugscheider, S.S. Guerreiro, 1998, “(Cr: AI) N coatings deposited by the cathodic vacuum arc evaporation”, Surface & Coatings Technology 98, pp.1233-1239 https://ac.els-cdn.com/S0257897297002387/1-s2.0-S0257897297002387-main.pdf?_tid=96e5809f-c3cf-4cb9-a8ca-3c92e2ee9049&acdnat=1543315650_0bd908a783c4cf736176853659fab126

[62]H. Willmann, P.H. Mayrhofer, P.O.A. Persson, A.E. Reiter, L.Hultman, C. Mitterer, 2006, “Thermal stability of Al–Cr–N hard coatings”, Scripta Materialia 54, pp.1847-1851 https://www.sciencedirect.com/science/article/pii/S1359646206001588

[63]Yin-Yu Change, Shi-Yao Weng, Chun-Hsiao Chen, Fu-Xing Fu, 2017, “High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings”, Surface & Coatings Technology 332, pp.494-503 https://www.sciencedirect.com/science/article/pii/S0257897217309180

[64]J.L.Mo, M.H. Zhu, 2008, “Sliding tribological behaviour of AlCrN coating”, Tribological International 41, pp. 1161-1168 https://www.sciencedirect.com/science/article/pii/S0301679X08000443

[65]J.L. Mo, M.H. Zhu, B.Lei, Y.X. Leng, N. Huang, 2007, “Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapour deposition”, wear 263, pp.1423-1429 https://www.sciencedirect.com/science/article/pii/S0043164807002438

[66]Akeem Yusuf Adesina, Fadi A. Al-Badour, Zuhair M. Gasem, 2018, “Wear resistance performance of AlCrN and TiAlN coated H13 tools during friction stir welding of A2124/SiC composite”, Journal of Manufacturing processes 33, pp.111-125 https://www.sciencedirect.com/science/article/pii/S1526612518303207

[67]Akeem Yusuf Adesina, Zuhair M. Gasem, Fadi A. Al-Badour, 2017, “Characterization and evaluation of AlCrN coated FSW tool: A preliminary study”, Journal of Manufacturing processes 25, pp.432-442 https://www.sciencedirect.com/science/article/pii/S1526612516301906

[68]Weiwei Wu, Wanglin Chen, Shubao Yang, Yue Lin, Shihong Zhang, Tong-Yul Cho, G.H. Lee, Sik-Chol Kwon, 2015, “Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools”, Applied surfaces science 351, pp.803-810 https://www.sciencedirect.com/science/article/pii/S0169433215013410

[69]J.L. Endrino, S. Palacin, M.H. Aguirre, A. Gutierrez, F. Schafers, 2007, “Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films”, Acta Materialia 55, pp. 2129-2135 https://www.sciencedirect.com/science/article/pii/S135964540600824X

[70]Luis Carlos Ardila-Tellez, Jose Manuel Sanchez-Moreno, Carlos Mauricio Moreno-Tellez,2014, “Effect of Silicon Addition on Microstructure and Mechanical Properties of Chromium and Titanium Based Coatings” Julio-Diciembre 23, pp.9-21 http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-11292014000200002

[71]Bai-Song Li, Tie-Gang Wang Jicheng Ding, Yujun Cai, Jing Shi, Xitong Zhang, 2017, “Influence of N2/Ar Flow Ratio on Microstructure and Properties of the AlCrSiN Coatings Deposited by High-Power Impulse Magnetron Sputtering”, Coatings https://www.mdpi.com/2079-6412/8/1/3

[72]Yin-Yu Chang, wen-Tung Chiu, Jui-Pin Hung, 2016, “Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation”, Surface & Coating Technology 303, pp. 18-24 https://www.sciencedirect.com/science/article/pii/S0257897216301062

[73]J. Soldan, J. Neidhardt, B. Sartory, R. Kaindl, R. Cerstvy, P.H. Mayrhofer, R. Tessadri, P. Polcik, C. Mitterer, 2008, “Structure–property relations of arc-evaporated Al–Cr–Si–N coatings”, Surface & Coatings Technology 202, pp. 3555-3562 https://www.sciencedirect.com/science/article/pii/S025789720800008X

[74]Yin-Yu Chang, Shun-Jan Yang, Da-Yung Wang, 2006, “Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc deposition process”, Surface & Coating Technology 201, pp.4209-4214 https://www.sciencedirect.com/science/article/pii/S0257897206009078

[75]S.Q. Sun, Y.W. Ye, Y.W. Wang, M.Q. Liu, J.L. Li, L.P. Wang, 2017, “Structure and tribological performance of CrAlSiN coatings with different Si percentages in seawater”, Tribology International 115, pp. 591-599 https://www.sciencedirect.com/science/article/pii/S0301679X17303262

[76]Weiwei Wu, Wanglin Chen, Shubao Yang, Yue Lin, Shihong Zhang, Tong-Yul Chao, G.H. Lee, Sik-Chol Kwon, 2015, “Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools”, Applied Surface Science 351, pp. 803-810 https://www.sciencedirect.com/science/article/pii/S0169433215013410

[77]J. Martan, P. Benes, 2012, “Thermal properties of cutting tool coatings at high temperatures”, Thermochimica Acta 539, pp. 51-55 https://www.sciencedirect.com/science/article/pii/S0040603112001554

[78]Tomas Polcar, Albano Cavaleiro, 2011, “High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings”, Surface & Coatings Technology 206, pp. 1244-1251 https://www.sciencedirect.com/science/article/pii/S0257897211008474

[79]Shihong Zhang, Lei Wang, Qimin Wang, Mingxi Li, 2013, “A superhard CrAlSiN superlattice coating deposited by a multi-arc ion plating: II. Thermal stability and oxidation resistance”, Surface & Coatings Technology Vol 214, pp.153-159 https://www.sciencedirect.com/science/article/pii/S0257897212006032

[80]H. Oettel, R. Wiedemann, 1995, “Residual stresses in PVD hard coatings”, Surface Coatings & Technology 76-77, pp. 265-273 https://www.sciencedirect.com/science/article/pii/0257897295025812

[81]C. Tritremmel, R. Daniel M. Lechthaler, P. Polcik, C. Mitterer, 2013, “Influence of Al and Si content on structure and mechanical properties of arc evaporated Al-Cr-Si-N films”, Thin Solid Films 534, pp. 403-409
https://www.sciencedirect.com/science/article/pii/S0040609013004483


[82]Chun-Hway Hsueh, Sanboh Lee, Hung-Yi Lin, 2006, “Analyses of mode I edge delamination by thermal stresses in multilayer systems”, Composites: Part B 37, pp.1-9 https://www.sciencedirect.com/science/article/pii/S1359836805000727

[83]Fjodor Sergejev, Priidu Peetsalu, Alina Sivitski, Mart Saarna, Eron Adoberg,2011, “Surface fatigue and wear of PVD coated punches during fine blanking operation”, Engineering Failure Analysis 18, pp.1689-1697 https://www.sciencedirect.com/science/article/pii/S1350630711000355

[84]E. Lugscheider, O. Knotek, C. Wolff, S. Barwulf, 1999, “Structure and properties of PVD-coatings by means of impact tester”, Surface Coatings & Technology 116-119, pp. 14-146 https://www.sciencedirect.com/science/article/pii/S0257897299003229

[85]R. Bantle, A. Matthews, 1995, “Investigation into the impact wear behaviour of ceramic coatings”, Surface Coatings & Technology 74-75, pp. 857-868 https://www.sciencedirect.com/science/article/pii/0257897295083146

[86]R Yuichiro Ebara, Katsuaki Kubota, 2008, “Failure analysis of hot forging dies for automotive components”, Engineering failure analysis 15, pp.881-893 https://www.researchgate.net/publication/229191585_Failure_analysis_of_hot_forging_dies_for_automotive_components

[87]A.C. Drumeanu, 2017, “Tribo-thermal fatigue of the steel used for the forging die construction” Materials science and engineering 174, pp.12-47 http://iopscience.iop.org/article/10.1088/1757-899X/174/1/012047/pdf

[88]Bruno Buchmayr, 2017, “Damage, Lifetime, and Repair of Forging Dies”, BHM 162, pp.88-93 https://www.researchgate.net/publication/311657765_Damage_Lifetime_and_Repair_of_Forging_Dies

[89]A.E. Zeghni, M.S.J. Hashmi, 2004, “The effect of coating and nitriding on the wear behaviour of tool steels”, Materials Processing Technology 155-156, pp.1918-1922 https://www.sciencedirect.com/science/article/pii/S0924013604006946

[90]Sukru Taktak, Ibrahim Gunes, Sukru Ulker, Yilmaz Yalcin, 2008, “Effect of N2+H2 gas mixtures in plasma nitriding on tribological properties of duplex surface treated steels”, Materials characterization 59, pp.1748-1791 http://www.academia.edu/11342281/Effect_of_N2_H2_gas_mixtures_in_plasma_nitriding_on_tribological_properties_of_duplex_surface_treated_steels

[91]A. Pramanik, F.Hakami, A.K. Basak, 2017 “Duplex surface treatment of steels by nitriding and chromizing”, Australian Journal of Mechanical Engineering Vol.15 https://www.tandfonline.com/doi/abs/10.1080/14484846.2015.1093256?journalCode=tmec20

[92]Marcos Alves Fontes, Ricardo Gomes Pereira, Frederico Augusto Pires Fernandes, Luiz Carlos Casteletti, Pedro Augusto de Paula Nascente, 2014, “Characterization of plasma nitrided layers produced on sintered iron” Materials research and technology, pp.210-216 https://www.sciencedirect.com/science/article/pii/S2238785414000465

[93]Yang Deng, Chaolin Tan, Yi Wang, ling Chen, Panpan Cai, Tongchun Kuang, Shumei Lei, Kesong Zhou, 2017, “Effects of tailored nitriding layers on comprehensive properties of duplex plasma-treated AlTiN coatings”, Ceramics Internationals 43, pp.8721-8729 https://www.sciencedirect.com/science/article/pii/S0272884217305862

[94]P. Panjan, I. Urankar, B. Navinsek, M. Tercelj, R. Turk, M. Cekada, V. Leskovsek, 2002, “Improvement of hot forging tools with duplex treatment”, Surface and Coatings Technology 151-152, pp.505-509 https://www.researchgate.net/publication/222129764_Improvement_of_hot_forging_tools_with_duplex_treatment

[95]Yang Li, Zhongli Liu, Jianbin Luo, Shangzhou Zhang, Jianxun Qiu, Yongyong He, 2018, “Microstructure, mechanical and adhesive properties of CrN/CrTiAlSiN WCrTiAlN multilayer coatings deposited on nitrided AISI 4140 steel”, Materials Characterization, pp.353-364 https://www.sciencedirect.com/science/article/pii/S1044580318328833

[96]26443, International Standard ISO, 2008 “Fine ceramics (advanced ceramics, advanced technical ceramics)-Rockwell indentation test for evaluation of adhesion of ceramic coatings”. Retrieved from https://www.iso.org/standard/43584.html

[97]Santosh V. Bhaskar, Hari N. Kudal, 2017, “Tribology of nitrided-coated steel-a review”, Arch. Mech. Tech. Mater. Vol 37, pp. 50-57 https://www.degruyter.com/downloadpdf/j/amtm.2017.37.issue-1/amtm-2017-0008/amtm-2017-0008.pdf

[98]I.C Noyan, T.C Huang, B.R. York, “residual Stress/Strain in thin films by X-ray diffraction”

[99]V. Teixeira, 2001, “Mechanical integrity in PVD coatings due to the presence of residual stresses”, Thin Solid Films 392, pp.276-281 https://www.sciencedirect.com/science/article/pii/S0040609001010434

[100]B.Bouaouina, A. Besnard, S.E. Abaidia, F. Haid, 2017, “Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge”, Applied Surface Science 395, pp.117-121 https://www.sciencedirect.com/science/article/pii/S0169433216307644

[101]C.V. Falub, A. Karimi, M. Ante, W. Kalss, 2007, “Interdependence between stress and texture in arc evaporated Ti–Al–N thin films”, Surface & Coatings Technology 201, pp.5891-5898 https://www.sciencedirect.com/science/article/pii/S0257897206013569

[102]J.L. Mo, M.H. Zhu, A. Leyland, A. Matthews, 2013, “Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings”, Surface & Coatings Technology 215, pp.170-177 https://www.sciencedirect.com/science/article/pii/S0257897212010468

[103]A.A. Voevodin, R. Bantle, A.Matthews, 1995, “Dynamic impact wear of TiC, N, and Ti-DLC composite coatings”, Wear 185, pp.151-157 https://www.sciencedirect.com/science/article/pii/0043164895066039

[104]J.C.A. Batista, C. Godoy, A. Matthews, 2003, “Impact testing of duplex and non-duplex (Ti, Al)N and Cr–N PVD Coatings”, Surface and Coatings Technology 163-164, pp.353-361https://www.sciencedirect.com/science/article/pii/S0257897202006321

[105]SangYul Lee, 2005, “Mechanical Properties of TiNx/Cr1-xN thin film on plasma nitriding-assisted AISI H13 steel”, Surface & Coatings Technology 193, pp.55-59

[106]Yessi Jusman, Slew Cheok Ng, Noor Azuan Abu Osman, “Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX”, The Scientific World Journal, Vol.2014, Article ID 289817, 11pages
https://www.researchgate.net/publication/266912548_Investigation_of_CPD_and_HMDS_Sample_Preparation_Techniques_for_Cervical_Cells_in_Developing_Computer-Aided_Screening_System_Based_on_FE-SEMEDX

[107]Dr. Habil.Boriana Mihaylova, Dr. Ulrich Bismayer, “Structural transformations in complex Perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures” https://www.researchgate.net/publication/302838100_Structural_transformations_in_complex_perovskite-type_relaxor_and_relaxor-based_ferroelectrics_at_high_pressures_and_temperatures

[108]Yiyi Wang, Ahmet S. Ozcan, Gozde Ozaydin, Karl F. Lidwig, Jr., Anirban Bhattacharyya, Theodore D. Moustakas, Hua Zhou, Randall L. Headrick, and D. Peter Siddons, 2006, “Real-time synchrotron x-ray studies of low- and high-temperature nitridation of c-plane sapphire” https://journals.aps.org/prb/pdf/10.1103/PhysRevB.74.235304

[109]Hongyan Wu, Yin Li, Xiao Tang, G. Hussain, Haofeng Zhao, Qingfang Li, Adetunla Adedotun, 2015, “Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement”, Applied Surface Science 324, pp.160-167 https://www.sciencedirect.com/science/article/pii/S0169433214023253

[110]Harish C. Barshilia, B. Deepthi, K.S Rajam, 2007, “Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering”, Surface & Coatings Technology 201, pp.9468-9475 https://www.researchgate.net/publication/223875371_Deposition_and_characterization_of_CrNSi3N4_and_CrAINSi3N4_nanocomposite_coatings_prepared_using_reactive_DC_unbalanced_magnetron_sputtering

[111]Shengli Ma, Yanhuai Li, Kewei Xu, 2001, “The composite pf nitrided steel of H13 and TiN coatings by plasma diplex treatment and the effect of pre-nitriding”, Surface & Coatings Technology 137, pp. 116-121 https://www.sciencedirect.com/science/article/pii/S0257897200010732

[112]Ilyas Hacisalihoglu, Fatih Yildiz, Akgun Alsaran, 2017, “Wear performance of different nitride-based coatings on plasma nitrided AISI M2 tool steel in dry and lubricated conditions”, Wear 384, pp. 159-168 https://www.sciencedirect.com/science/article/pii/S0043164817302685

[113]Fanyong Zhang, Mufu Yan, 2014, “Microstructure and wear resistance of in situ formed duplex coatings fabricated by plasma nitriding Ti coated 2024 Al alloy”, pp. 1278-1283 https://www.sciencedirect.com/science/article/pii/S1005030214000759

[114]K. Shukla, R. Rane, J. Alphonsa, P. Maity, S. Mukherjee, 2017, “Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L”, Surface & Coatings Technology 324, pp. 167-174 https://www.sciencedirect.com/science/article/pii/S0257897217305662

[115]R. Bantle, A. Matthews, 1995, “Investigation into the impact wear resistance of ceramic coatings”, Surface & Coatings Technology 74-75, pp. 857-868 https://www.sciencedirect.com/science/article/pii/0257897295083146

[116]G. Cassar, S. Banfield, J.C. Avelar-Batista Wilson, J. Housden, A. Matthews, A. Leyland, 2012, “Impact wear resistance of plasma diffusion treated and duplex treated/PVD coated Ti-6Al-4V alloy”, Surface & Coatings Technology 206, 2645-2654 https://www.sciencedirect.com/science/article/pii/S0257897211011200

[117]G. Cassar, S. Banfield, J.C. Avelar-Batista Wilson, J. Housden, A. Matthews, A. Leyland, 2011, “Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coatings on the fatigue performance of Ti-6Al-4V alloy”, International Journal of Fatigue 33, pp. 1313-1323 https://www.um.edu.mt/library/oar/handle/123456789/18635


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top