跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭筠青
研究生(外文):Yun-Ching Peng
論文名稱:利用溶液剪切技術製備新穎電子施體-受體共軛高分子有機場效電晶體
論文名稱(外文):Evaluation of Novel Donor-Accepter Conjugated Polymer-Based Field-Effect Transistors using Solution Shearing Technique
指導教授:李文亞
口試委員:邱昱誠郭霽慶
口試日期:2017-01-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:105
語文別:英文
論文頁數:62
中文關鍵詞:不同長度的側鏈共軛高分子場效電晶體異靛藍素基
外文關鍵詞:field-effect transistors.different length side chainconjugated polymersIsoindigo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
此碩士論文研究發展了一系列以異靛藍素基施體/受體為主鏈的高分子分別是PII2TC8、PII2TC10、 PII2TC16、PII2TPEO、 PII2TC6C8、 PII2TC8C10 以及PII2TC10C12,在此研究中將會對合成方法以及材料性質作更進一步的探討。此研究將以異靛藍素基施體/受體為主鏈並設計不同的烷基側鏈,更進一步且系統性的研究主動層的結構性質。在薄膜製程的方法上,使用溶液剪切技術。此方法可以使晶體的排列更加有方向性因而在薄膜場電晶體元件的表現上,表現出乎意料的效果。在我們的系統中使用了溶液剪切技術製成薄膜並應用於下閘極上接觸式電晶體,在PII2TC8C10此材料得到最高的電晶體電洞遷移率平均為(3.33±0.25)×10-1cm2 V−1 s−1以及電流開關比約105。此實驗結果能夠了解到改變側練的結構可以有效地控制其溶解度、晶體間的排列以及薄膜型態。在有機場效電晶體此類型的電子元件中光電高分子材料的發展具有相當的重要性。詳細的研究結果如下:
本文的第一部分(第二章)-新穎異靛藍素電子施體/受體共軛高分子之合成及特性鑑定:此研究中成功的以異靛藍素基施體/受體為主鏈並用鈴木偶合反應聚合出這七種高分子,分別是PII2TC8、PII2TC10、 PII2TC16、PII2TPEO、 PII2TC6C8、 PII2TC8C10 以及PII2TC10C12。在高分子合成的鑑定中,藉由核磁共振氫譜以及元素分析等鑑定確認高分子的正確性。並透過示差掃描儀以及熱重分析儀去探討熱穩定性質,而此七之高分子的熱裂解溫度分別落在350至395攝氏溫度。光學性質的部分,將樣品製成薄膜型態在414至782奈米間測得了相當強烈的吸收。其氧化還原的特性則是以循環伏安法得到其最高佔有軌域以及最低未佔有軌域落在1.51至1.60電子伏特之間。這些基礎鑑定的測量之後,並不足以讓我們了解薄膜型態的排列上對有機薄膜電晶體的影響,因此我們進一步做了低掠角繞射X光儀及原子力顯微鏡的分析去了解型態學的變化對有機薄膜電晶體的影響。
本文的第二部分(第三章)-異靛藍素基共軛高分子之有機場效電晶體:
在我們的系統中使用了溶液剪切技術製成薄膜並應用於下閘極上接觸式電晶體,藉由此溶液剪切技術可以使晶體近乎有轉動的效果而更進一步使晶體的排列及生成條件更佳。而此技術和晶體的誘導排列程度具有相當的關聯性,因此我們使用了分光鏡技術透過紫外光/可見光分光鏡儀檢驗晶體的誘導排列程度。在系統中,誘導排列程度最高的是PII2TC8為1.39且也因透過溶液剪切技術得到最高的電晶體電洞遷移率平均為(3.33±0.25)×10-1cm2 V−1 s−1以及電流開關比約105。
A series of isoindigo-based donor-acceptor copolymers PII2TC8, PII2TC10, PII2TC16, PII2TPEO, PII2TC6C8, PII2TC8C10 and PII2TC10C12 were synthesized and characterized. To further investigate the detailed structure-property relationships of active layer, we constituted different alkyl side chains systematically on a isoindigo-bithiophene polymer backbone. Solution shearing is a promising method to enhance the performance of thin film tansistor which facilitate the alignment of the polymer chains. In our system, the polymer with the PII2TC8C10 side chains exhibited the highest field-effect mobility of (3.33±0.25)×10-1cm2 V−1 s−1 with a high on/off current ratio of 105 using a bottom gate/top contact field-effect transistor through solution shearing process. The experimental results revealed that the selection of the side chains is a key factor for the chemical and electrical characteristic of the donor-acceptor polymers for high performance electronic devices applications. The details of this work are summarized as follows:

Synthesis and Characterization of Different Side Chain Length Branched Isoindigo-Bithiophene Conjugated Polymers: In chapter 2, the seven isoindigo-bithiophene polymers, including PII2TC8, PII2TC10, PII2TC16, PII2TPEO, PII2TC6C8, PII2TC8C10 and PII2TC10C12. With isoindigo-based and oligothiophenes, we successfully obtained these polymers through Suzuki coupling. The monomer were confirmed by H-NMR, and element analysis. The thermal property were scanning by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed the seven isoindigo-based polymers with degradation temperatures of around 350℃ to 395℃. UV-vis absorption spectra of the polymer films have showed strong absorption around 414 nm to 782 nm in thin film. The redox behavior of these polymers was investigated by cyclic voltammetry (CV) giving the HOMO levels ranging from 1.51 eV to 1.60 eV. In order to reveal the influence of the side chains on the performance of the thin film transistors, we performed atomic force microscope (AFM) and grazing incidence X-ray (GIXD) to investigate the morphology and crystalline structure, respectively.

Field-Effect transistors of Isoindigo-based Conjugated Polymers (Chapter 3): Thin film transistors were fabricated by solution shearing in a bottom gate/top contact field-effect transistor. Through the solution shearing, the crystalline grains of the polymer films have showed a similar orientation along with the top blade. To further investigate the polymer alignment, we employed dichroic filter of UV-vis absorption spectrum. In our system, the polymer with the PII2TC8C10 side chains exhibited the highest alignment level dichroic ratio of 1.39, and the highest field-effect mobility of (3.33±0,25)×10-1cm2 V−1 s−1 with a high on/off current ratio of 105 through solution shearing process.
Outline
致謝............................................................................................................................................. I
ABSTRACT ............................................................................................................................. II
中文摘要................................................................................................................................... V
OUTLINE ............................................................................................................................. VII
SCHEME CAPTIONS .......................................................................................................... IX
TABLE CAPTIONS ................................................................................................................ X
FIGURE CAPTIONS ............................................................................................................ XI
CHAPTER 1 ............................................................................................................................. 1
1.1.1 Isoindigo-Based Donor-Acceptor Materials ............................................................ 2
1.1.2 Linear Side Chain of Isoindigo-Bithiophene Polymers ........................................... 4
1.1.3 Branch Side Chain of Isoindigo-Bithiophene Polymers .......................................... 5
1.2 INTRODUCTION TO ORGANIC FIELD-EFFECT TRANSISTORS ............................................ 5
1.2.1 Device Structures and Working Principles ..................................................................................... 6
1.2.2 Electrical Characterizations ..................................................................................... 8
1.3 SOLUTION SHEARING PROCESS ..................................................................................... 10
1.3.1 Basic Property and Principle .................................................................................. 10
1.3.2 Solution Sheared OFETs ........................................................................................ 10
1.4 RESEARCH OBJECTIVES .................................................................................................. 12
CHAPTER 2 SYNTHESIS AND CHARACTERIZATIONS OF ISOINDIGO-BASED
DONOR-ACCEPTOR COPOLYMERS .............................................................................. 13
2.1 INTRODUCTION .............................................................................................................. 13
2.2 EXPERIMENTAL SECTION ............................................................................................... 14
2.2.1 Materials ................................................................................................................. 14
2.2.2 General Method for N-alkylation of 6,6-Dibromoisoindigo with N-alkylbromide:
......................................................................................................................................... 15
2.2.3 General Method for Polymerization ....................................................................... 21
2.3 RESULT AND DISCUSSION .............................................................................................. 25
2.3.1 POLYMER CHARACTERIZATIONS ................................................................................. 25
viii
2.3.2 THERMAL PROPERTY .................................................................................................. 25
2.3.3 OPTICAL CHARACTERIZATIONS .................................................................................. 27
2.3.4 ELECTROCHEMICAL PROPERTY .................................................................................. 31
2.3.5 MORPHOLOGICAL CHARACTERIZATIONS .................................................................... 32
2.4 CONCLUSION .................................................................................................................. 34
CHAPTER 3 ........................................................................................................................... 36
TRANSISTOR CHARACTERIZATIONS OF ISOINDIGO-BITHIOPHENE
POLYMERS THROUGH SOLUTION SHEARING PROCESS ..................................... 36
3.1 INTRODUCTION .............................................................................................................. 36
3.2 EXPERIMENTAL SECTION ............................................................................................... 37
3.2.1 Material .................................................................................................................. 37
3.2.2 OFET FABRICATION AND CHARACTERIZATIONS OF ISOINDIGO-BITHIOPHENE
POLYMERS WITH LINEAR SIDE CHAINS ............................................................................... 37
3.2.3 OFET FABRICATION AND CHARACTERIZATIONS OF ISOINDIGO-BITHIOPHENE
POLYMERS WITH BRANCH SIDE CHAINS ............................................................................. 39
3.3 RESULT AND DISCUSSION .............................................................................................. 39
3.3.1 OFET Characteristics of the Isoindigo-Bithiophene Polymers with Different Side
Chain Architectures ......................................................................................................... 39
3.3.2 SURFACE MORPHOLOGY AND DICHROIC RATIO ......................................................... 43
3.3.3 MOLECULAR PACKING STRUCTURES .......................................................................... 47
3.4 CONCLUSION .................................................................................................................. 50
CHAPTER 4 ........................................................................................................................... 52
CONCLUSION AND FUTURE WORK ............................................................................. 52
REFERENCE ...............................................................................................................55
1. Bao, Z.; Peng, Z.; Galvin, M. E.; Chandross, E. A., Novel oxadiazole side chain
conjugated polymers as single-layer light-emitting diodes with improved quantum
efficiencies. Chemistry of materials 1998, 10 (5), 1201-1204.
2. Janssen, R. A. J.; Nelson, J., Factors limiting device efficiency in organic
photovoltaics. Advanced Materials 2013, 25 (13), 1847-1858.
3. Ho, C.-C.; Chang, S.-Y.; Huang, T.-C.; Chen, C.-A.; Liao, H.-C.; Chen, Y.-F.; Su,
W.-F., Synthesis, characterization and photovoltaic properties of poly
(cyclopentadithiophene-alt-isoindigo). Polymer Chemistry 2013, 4 (20), 5351-5360.
4. Elsawy, W.; Lee, C.-L.; Cho, S.; Oh, S.-H.; Moon, S.-H.; Elbarbary, A.; Lee, J.-S.,
Isoindigo-based small molecules for high-performance solution-processed organic
photovoltaic devices: the electron donating effect of the donor group on photo-physical
properties and device performance. Physical Chemistry Chemical Physics 2013, 15 (36),
15193-15203.
5. Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y., 25th anniversary
article: A decade of organic/polymeric photovoltaic research. Advanced Materials 2013,
25 (46), 6642-6671.
6. Hu, C.; Fu, Y.; Li, S.; Xie, Z.; Zhang, Q., Synthesis and photovoltaic properties of
new conjugated polymers based on syn-and anti-benzodifuran. Polymer Chemistry
2012, 3 (10), 2949-2955.
7. Forrest, S. R.; Thompson, M. E., Introduction: organic electronics and
optoelectronics. Chemical Reviews 2007, 107 (4), 923-925.
8. Facchetti, A., Semiconductors for organic transistors. Materials Today 2007, 10
(3), 28-37.
9. Bao, Z.; Gundlach, D. J., Organic Field-Effect Transistors VI. Proc. SPIE 6658,
2007.
10. Elsawy, W.; Son, M.; Jang, J.; Kim, M. J.; Ji, Y.; Kim, T.-W.; Ko, H. C.; Elbarbary,
A.; Ham, M.-H.; Lee, J.-S., Isoindigo-Based Donor–Acceptor Conjugated Polymers for
Air-Stable Nonvolatile Memory Devices. ACS Macro Letters 2015, 4 (3), 322-326.
11. Leong, W. L.; Mathews, N.; Tan, B.; Vaidyanathan, S.; Dötz, F.; Mhaisalkar, S.,
Towards printable organic thin film transistor based flash memory devices. Journal of
Materials Chemistry 2011, 21 (14), 5203-5214.
12. Ho, V.; Boudouris, B. W.; Segalman, R. A., Tuning polythiophene crystallization
through systematic side chain functionalization. Macromolecules 2010, 43 (19), 7895-
7899.
13. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-conjugated
systems in field-effect transistors: a material odyssey of organic electronics. Chemical
56
Reviews 2011, 112 (4), 2208-2267.
14. Katz, H. E.; Laquindanum, J. G.; Lovinger, A. J., Synthesis, solubility, and fieldeffect
mobility of elongated and oxa-substituted α, ω-dialkyl thiophene oligomers.
Extension of “polar intermediate” synthetic strategy and solution deposition on
transistor substrates. Chemistry of materials 1998, 10 (2), 633-638.
15. Klauk, H., Organic thin-film transistors. Chemical Society Reviews 2010, 39 (7),
2643-2666.
16. Becerril, H. A.; Roberts, M. E.; Liu, Z.; Locklin, J.; Bao, Z., High-Performance
Organic Thin-Film Transistors through Solution-Sheared Deposition of Small-
Molecule Organic Semiconductors. Advanced Materials 2008, 20 (13), 2588-2594.
17. Katz, H. E.; Bao, Z.; Gilat, S. L., Synthetic chemistry for ultrapure, processable,
and high-mobility organic transistor semiconductors. Accounts of Chemical Research
2001, 34 (5), 359-369.
18. Yiu, A. T.; Beaujuge, P. M.; Lee, O. P.; Woo, C. H.; Toney, M. F.; Fréchet, J. M.,
Side-chain tunability of furan-containing low-band-gap polymers provides control of
structural order in efficient solar cells. Journal of the American Chemical Society 2012,
134 (4), 2180-2185.
19. Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Das, S.; Ivanov, I.;
Rouleau, C.; Duscher, G.; Geohegan, D., Perovskite solar cells with near 100% internal
quantum efficiency based on large single crystalline grains and vertical bulk
heterojunctions. Journal of the American Chemical Society 2015, 137 (29), 9210-9213.
20. Lee, S. Y.; Duong, D. L.; Vu, Q. A.; Jin, Y.; Kim, P.; Lee, Y. H., Chemically
Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio.
ACS Nano 2015, 9 (9), 9034-9042.
21. Shibata, T.; Ohmi, T., A functional MOS transistor featuring gate-level weighted
sum and threshold operations. IEEE Transactions on Electron devices 1992, 39 (6),
1444-1455.
22. Kim, M. J.; Choi, J. Y.; An, G.; Kim, H.; Kang, Y.; Kim, J. K.; Son, H. J.; Lee, J.
H.; Cho, J. H.; Kim, B., A new rigid planar low band gap PTTDPP-DT-DTT polymer
for organic transistors and performance improvement through the use of a binary
solvent system. Dyes and Pigments 2016, 126, 138-146.
23. Ouhib, F.; Tomassetti, M.; Dierckx, W.; Verstappen, P.; Wislez, A.; Duwez, A.-S.;
Lemaur, V.; Lazzaroni, R.; Manca, J.; Maes, W., Linear and propeller-like fluoroisoindigo
based donor–acceptor small molecules for organic solar cells. Organic
Electronics 2015, 20, 76-88.
24. Patil, H.; Chang, J.; Gupta, A.; Bilic, A.; Wu, J.; Sonar, P.; Bhosale, S. V.,
Isoindigo-based small molecules with varied donor components for solutionprocessable
organic field effect transistor devices. Molecules 2015, 20 (9), 17362-
57
17377.
25. Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J., Highly efficient 2D-conjugated
benzodithiophene-based photovoltaic polymer with linear alkylthio side chain.
Chemistry of Materials 2014, 26 (12), 3603-3605.
26. Phan, H.; Wang, M.; Bazan, G. C.; Nguyen, T. Q., Electrical Instability Induced
by Electron Trapping in Low-Bandgap Donor–Acceptor Polymer Field-Effect
Transistors. Advanced Materials 2015, 27 (43), 7004-7009.
27. Mei, J.; Graham, K. R.; Stalder, R.; Tiwari, S. P.; Cheun, H.; Shim, J.; Yoshio, M.;
Nuckolls, C.; Kippelen, B.; Castellano, R. K., Self-assembled amphiphilic
diketopyrrolopyrrole-based oligothiophenes for field-effect transistors and solar cells.
Chemistry of Materials 2011, 23 (9), 2285-2288.
28. Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R., Synthesis of isoindigo-based
oligothiophenes for molecular bulk heterojunction solar cells. Organic letters 2010, 12
(4), 660-663.
29. Peng, B.; Chan, P. K., Flexible organic transistors on standard printing paper and
memory properties induced by floated gate electrode. Organic Electronics 2014, 15 (1),
203-210.
30. Wen, S.-H.; Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard III, W. A., Firstprinciples
investigation of anistropic hole mobilities in organic semiconductors. The
Journal of Physical Chemistry B 2009, 113 (26), 8813-8819.
31. Zaumseil, J.; Sirringhaus, H., Electron and ambipolar transport in organic fieldeffect
transistors. Chemical reviews 2007, 107 (4), 1296-1323.
32. Hwang, K. J.; Carlson, K. E.; Anstead, G. M.; Katzenellenbogen, J. A., Donoracceptor
tetrahydrochrysenes, inherently fluorescent, high-affinity ligands for the
estrogen receptor: binding and fluorescence characteristics and fluorometric assay of
receptor. Biochemistry 1992, 31 (46), 11536-11545.
33. Yi, Z.; Wang, S.; Liu, Y., Design of High-Mobility Diketopyrrolopyrrole-Based π-
Conjugated Copolymers for Organic Thin-Film Transistors. Advanced Materials 2015,
27 (24), 3589-3606.
34. Jiang, Y.; Gao, Y.; Tian, H.; Ding, J.; Yan, D.; Geng, Y.; Wang, F., Synthesis and
Characterization of Isoindigo [7, 6-g] isoindigo-Based Donor–Acceptor Conjugated
Polymers. Macromolecules 2016, 49 (6), 2135-2144.
35. Hong, C.-W.; Wu, H.-C.; Chen, W.-C., Biaxially Extended Thiophene-Isoindigo
Donor-Acceptor Conjugated Polymer for High-Performance Flexible Field-Effect
Transistors. Polymer Chemistry 2016.
36. Heeger, A. J., 25th anniversary article: Bulk heterojunction solar cells:
Understanding the mechanism of operation. Advanced Materials 2014, 26 (1), 10-28.
37. Rivnay, J.; Jimison, L. H.; Northrup, J. E.; Toney, M. F.; Noriega, R.; Lu, S.; Marks,
58
T. J.; Facchetti, A.; Salleo, A., Large modulation of carrier transport by grain-boundary
molecular packing and microstructure in organic thin films. Nature materials 2009, 8
(12), 952-958.
38. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.;
Mann, K. R., Introduction to organic thin film transistors and design of n-channel
organic semiconductors. Chemistry of Materials 2004, 16 (23), 4436-4451.
39. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.;
Facchetti, A., A high-mobility electron-transporting polymer for printed transistors.
Nature 2009, 457 (7230), 679-686.
40. Lee, W. Y.; Giri, G.; Diao, Y.; Tassone, C. J.; Matthews, J. R.; Sorensen, M. L.;
Mannsfeld, S. C.; Chen, W. C.; Fong, H. H.; Tok, J. B. H., Effect of Non-Chlorinated
Mixed Solvents on Charge Transport and Morphology of Solution-Processed Polymer
Field-Effect Transistors. Advanced Functional Materials 2014, 24 (23), 3524-3534.
41. Song, Y.; Di, C. a.; Yang, X.; Li, S.; Xu, W.; Liu, Y.; Yang, L.; Shuai, Z.; Zhang,
D.; Zhu, D., A cyclic triphenylamine dimer for organic field-effect transistors with high
performance. Journal of the American Chemical Society 2006, 128 (50), 15940-15941.
42. Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.;
Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I.,
Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-
Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic
Solar Cells. Journal of the American Chemical Society 2015, 137 (3), 1314-1321.
43. Wang, E.; Mammo, W.; Andersson, M. R., 25th Anniversary Article: Isoindigo-
Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field
Effect Transistors. Advanced Materials 2014, 26 (12), 1801-1826.
44. Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.;
Anthopoulos, T. D.; Heeney, M., Influence of Side-chain regiochemistry on the
transistor performance of high-mobility, all-donor polymers. Journal of the American
Chemical Society 2014, 136 (43), 15154-15157.
45. Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.;
Zang, L., Effect of side-chain substituents on self-assembly of perylene diimide
molecules: morphology control. Journal of the American Chemical Society 2006, 128
(22), 7390-7398.
46. Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.;
Vanderzande, D., Life cycle analyses of organic photovoltaics: A review. Energy and
Environmental Science 2013, 6 (11), 3136-3149.
47. Stalder, R.; Puniredd, S. R.; Hansen, M. R.; Koldemir, U.; Grand, C.;
Zajaczkowski, W.; Müllen, K.; Pisula, W.; Reynolds, J. R., Ambipolar Charge Transport
in Isoindigo-Based Donor–Acceptor Polymers. Chemistry of Materials 2016, 28 (5),
59
1286-1297.
48. Min, J.; Zhang, Z.-G.; Zhang, S.; Li, Y., Conjugated side-chain-isolated D–A
copolymers based on benzo [1, 2-b: 4, 5-b′] dithiophene-alt-dithienylbenzotriazole:
synthesis and photovoltaic properties. Chemistry of Materials 2012, 24 (16), 3247-3254.
49. Shaw, L.; Hayoz, P.; Diao, Y.; Reinspach, J. A.; To, J. W.; Toney, M. F.; Weitz, R.
T.; Bao, Z., Direct Uniaxial Alignment of a Donor–Acceptor Semiconducting Polymer
Using Single-Step Solution Shearing. ACS applied materials & interfaces 2016, 8 (14),
9285-9296.
50. Shao, J.; Zhang, X.; Tian, H.; Geng, Y.; Wang, F., Donor–acceptor–donor
conjugated oligomers based on isoindigo and anthra [1, 2-b] thieno [2, 3-d] thiophene
for organic thin-film transistors: the effect of the alkyl side chain length on
semiconducting properties. Journal of Materials Chemistry C 2015, 3 (29), 7567-7574.
51. Vandewal, K.; Himmelberger, S.; Salleo, A., Structural factors that affect the
performance of organic bulk heterojunction solar cells. Macromolecules 2013, 46 (16),
6379-6387.
52. Zaumseil, J.; Friend, R. H.; Sirringhaus, H., Spatial control of the recombination
zone in an ambipolar light-emitting organic transistor. Nature materials 2006, 5 (1), 69-
74.
53. Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y., Polythiophene derivative with
phenothiazine-vinylene conjugated side chain: synthesis and its application in fieldeffect
transistors. Macromolecules 2007, 40 (20), 7231-7237.
54. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer photovoltaic
cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions.
Science 1995, 270 (5243), 1789-1791.
55. Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang,
C.; Yan, Q.; Reinspach, J., High Performance All-Polymer Solar Cell via Polymer Side-
Chain Engineering. Advanced Materials 2014, 26 (22), 3767-3772.
56. Sun, Y.; Liu, Y.; Zhu, D., Advances in organic field-effect transistors. Journal of
materials Chemistry 2005, 15 (1), 53-65.
57. Scharber, M. C., On the Efficiency Limit of Conjugated Polymer: Fullerene-Based
Bulk Heterojunction Solar Cells. Advanced Materials 2016.
58. Mei, J.; Bao, Z., Side chain engineering in solution-processable conjugated
polymers. Chemistry of Materials 2013, 26 (1), 604-615.
59. Bunz, U. H., α-oligofurans: molecules without a twist. Angewandte Chemie
International Edition 2010, 49 (30), 5037-5040.
60. Ernzerhof, M.; Zhuang, M.; Rocheleau, P., Side-chain effects in molecular
electronic devices. The Journal of chemical physics 2005, 123 (13), 134704.
61. Chou, C.-H.; Hsu, S.-L.; Dinakaran, K.; Chiu, M.-Y.; Wei, K.-H., Synthesis and
60
characterization of luminescent polyfluorenes incorporating side-chain-tethered
polyhedral oligomeric silsesquioxane units. Macromolecules 2005, 38 (3), 745-751.
62. Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y., Low-bandgap near-IR conjugated
polymers/molecules for organic electronics. Chemical reviews 2015, 115 (23), 12633-
12665.
63. Fukuta, S.; Wu, H. C.; Koganezawa, T.; Isshiki, Y.; Ueda, M.; Chen, W. C.;
Higashihara, T., Synthesis and FET characterization of novel ambipolar and lowbandgap
naphthalene-diimide-based semiconducting polymers. Journal of Polymer
Science Part A: Polymer Chemistry 2016, 54 (3), 359-367.
64. Kang, I.; Yun, H.-J.; Chung, D. S.; Kwon, S.-K.; Kim, Y.-H., Record high hole
mobility in polymer semiconductors via side-chain engineering. Journal of the
American Chemical Society 2013, 135 (40), 14896-14899.
65. Torsi, L.; Tanese, M.; Cioffi, N.; Gallazzi, M.; Sabbatini, L.; Zambonin, P.; Raos,
G.; Meille, S.; Giangregorio, M., Side-chain role in chemically sensing conducting
polymer field-effect transistors. The Journal of Physical Chemistry B 2003, 107 (31),
7589-7594.
66. Park, Y. D.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.;
Cho, K., Effect of side chain length on molecular ordering and field-effect mobility in
poly (3-alkylthiophene) transistors. Organic electronics 2006, 7 (6), 514-520.
67. Hiszpanski, A. M.; Loo, Y.-L., Directing the film structure of organic
semiconductors via post-deposition processing for transistor and solar cell applications.
Energy & Environmental Science 2014, 7 (2), 592-608.
68. Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Lin, E. K.; Richter, L. J.;
Chabinyc, M. L.; Toney, M. F.; Heeney, M.; McCulloch, I., Critical role of side-chain
attachment density on the order and device performance of polythiophenes.
Macromolecules 2007, 40 (22), 7960-7965.
69. Lee, J.; Han, A.-R.; Yu, H.; Shin, T. J.; Yang, C.; Oh, J. H., Boosting the ambipolar
performance of solution-processable polymer semiconductors via hybrid side-chain
engineering. Journal of the American Chemical Society 2013, 135 (25), 9540-9547.
70. Anthony, J. E., Organic electronics: addressing challenges. Nature materials 2014,
13 (8), 773-775.
71. Dodabalapur, A., Organic and polymer transistors for electronics. Materials Today
2006, 9 (4), 24-30.
72. Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Tran, L. T.; Sekine, T.;
Mizukami, M.; Kumaki, D.; Tokito, S., Fully-printed high-performance organic thinfilm
transistors and circuitry on one-micron-thick polymer films. Nature
communications 2014, 5.
73. Kreyes, A.; Mourran, A.; Hong, Z.; Wang, J.; Möller, M.; Gholamrezaie, F.;
61
Roelofs, W. C.; de Leeuw, D. M.; Ziener, U., Predictability of Thermal and Electrical
Properties of End-Capped Oligothiophenes by a Simple Bulkiness Parameter.
Chemistry of Materials 2013, 25 (10), 2128-2136.
74. Yassar, A., Recent trends in crystal engineering of high-mobility materials for
organic electronics. Polymer Science Series C 2014, 56 (1), 4-19.
75. Thiemann, S.; Sachnov, S.; Gruber, M.; Gannott, F.; Spallek, S.; Schweiger, M.;
Krückel, J.; Kaschta, J.; Spiecker, E.; Wasserscheid, P., Spray-coatable ionogels based
on silane-ionic liquids for low voltage, flexible, electrolyte-gated organic transistors.
Journal of Materials Chemistry C 2014, 2 (13), 2423-2430.
76. Gsänger, M.; Kirchner, E.; Stolte, M.; Burschka, C.; Stepanenko, V.; Pflaum, J.;
Würthner, F., High-performance organic thin-film transistors of J-stacked squaraine
dyes. Journal of the American Chemical Society 2014, 136 (6), 2351-2362.
77. Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y., A polythiophene derivative with
octyloxyl triphenylamine-vinylene conjugated side chain: Synthesis and its applications
in field-effect transistor and polymer solar cell. Synthetic Metals 2009, 159 (3), 182-
187.
78. Usta, H.; Sheets, W. C.; Denti, M.; Generali, G.; Capelli, R.; Lu, S.; Yu, X.;
Muccini, M.; Facchetti, A., Perfluoroalkyl-Functionalized Thiazole–Thiophene
Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting
Transistors. Chemistry of Materials 2014, 26 (22), 6542-6556.
79. Sirringhaus, H., 25th Anniversary Article: Organic Field-Effect Transistors: The
Path Beyond Amorphous Silicon. Advanced materials 2014, 26 (9), 1319-1335.
80. Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H.; Lovinger, A.; Bao,
Z., Electronic sensing of vapors with organic transistors. Applied Physics Letters 2001,
78 (15), 2229-2231.
81. Heimel, G.; Romaner, L.; Zojer, E.; Brédas, J.-L., Toward control of the metalorganic
interfacial electronic structure in molecular electronics: A first-principles study
on self-assembled monolayers of π-conjugated molecules on noble metals. Nano letters
2007, 7 (4), 932-940.
82. Horowitz, G., Organic field-effect transistors. Advanced Materials 1998, 10 (5),
365-377.
83. Hwang, D. K.; Fuentes-Hernandez, C.; Fenoll, M.; Yun, M.; Park, J.; Shim, J. W.;
Knauer, K. A.; Dindar, A.; Kim, H.; Kim, Y., Systematic reliability study of top-gate pand
n-channel organic field-effect transistors. ACS applied materials & interfaces 2014,
6 (5), 3378-3386.
84. Veres, J.; Ogier, S.; Lloyd, G.; De Leeuw, D., Gate insulators in organic field-effect
transistors. Chemistry of Materials 2004, 16 (23), 4543-4555.
85. Gao, X.; Zhao, Z., High mobility organic semiconductors for field-effect
62
transistors. Science China Chemistry 2015, 58 (6), 947-968.
86. Giri, G.; Li, R.; Smilgies, D.-M.; Li, E. Q.; Diao, Y.; Lenn, K. M.; Chiu, M.; Lin,
D. W.; Allen, R.; Reinspach, J., One-dimensional self-confinement promotes
polymorph selection in large-area organic semiconductor thin films. Nature
communications 2014, 5.
87. Giri, G.; Park, S.; Vosgueritchian, M.; Shulaker, M. M.; Bao, Z., High-Mobility,
Aligned Crystalline Domains of TIPS-Pentacene with Metastable Polymorphs Through
Lateral Confinement of Crystal Growth. Advanced Materials 2014, 26 (3), 487-493.
88. Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C.-A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.;
Zhou, Y., A stable solution-processed polymer semiconductor with record highmobility
for printed transistors. Scientific reports 2012, 2, 754.
89. Li, Y.; Sun, H.; Shi, Y.; Tsukagoshi, K., Patterning technology for solutionprocessed
organic crystal field-effect transistors. Science and Technology of Advanced
Materials 2016.
90. Mei, J.; Wu, H.-C.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W.-Y.;
Kurosawa, T.; Chen, W.-C.; Bao, Z., Effect of spacer length of siloxane-terminated side
chains on charge transport in isoindigo-based polymer semiconductor thin films.
Advanced Functional Materials 2015, 25, 3455.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊