跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳穎興
研究生(外文):CHEN, YING-HSIN
論文名稱:Al2O3陶瓷及SiO2陶瓷摻雜至 CaO-Al2O3-B2O3-SiO2玻璃 之銀擴散、微觀與電性之研究
論文名稱(外文):Ag-Diffusion, Microstructures, and Electrical Properties of Al2O3-and SiO2-dopings in LTCC CaO-Al2O3-B2O3-SiO2 Glass
指導教授:陳炳宜馮奎智
指導教授(外文):CHEN, PIN-YIFENG, KWE-CHIN
口試委員:陳炳宜馮奎智陳正劭杜繼舜
口試委員(外文):CHEN, PIN-YIFENG, KWE-CHINCHEN, CHENG-SAOTU, CHI-SHUN
口試日期:2017-06-21
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:銀共燒擴散活化能微波介電陶瓷低溫共燒陶瓷
外文關鍵詞:Microwave dielectric ceramicsLTCCCo-firing with silverActivation energy of diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
微波介電材料與元件為近年來快速發展的重要科技與科學議題,而可應用在微波介電陶瓷的元件包括有:濾波器 (filter)、諧振器 (resonator)、高頻天線 (antenna)、介質天線、介質導波迴路等,另外為了配合這些元件的使用需搭配許多微波高頻基板 (high-frequency microwave substrate)的開發,因而近年普遍使用在高頻通訊系統的產業中,開發符合市場要求的微波介電元件與基板應運而生。此外同時為了能夠達到有效降低成本訴求,近年來重要之革新技術,就在於積極發展的低溫共燒陶瓷 (low temperature co-fired ceramic, LTCC)技術。而由於銀元素在高溫燒結環境下,容易與材料發生反應,造成銀的擴散,因此,針對材料與銀共燒後,銀的擴散行為之研究以及如何有效降低銀擴散。本實驗選擇具有商業應用潛力之Low k微波材料CaO-Al2O3-B2O3-SiO2玻璃摻雜x wt%Al2O3陶瓷與銀共燒(x=0~30) (簡稱Al2O3 + glass),也選擇x wt%SiO2石英粉(x=0~6)添加(簡稱SiO2-doped Al2O3 + glass),了解SiO2添加對於抑制銀擴散行為之成效,經由光學顯微鏡及SEM-EDS觀察銀擴散,結果顯示燒結溫度升高及持溫時間增加,會影響銀擴散的距離,CaO-Al2O3-B2O3-SiO2玻璃因摻雜8wt%Al2O3陶瓷後燒結,機械強度增加為11.8 kpa及介電特性測試k值為5.6、Df值為0.124為最好表現。CaO-Al2O3-B2O3-SiO2玻璃摻雜6wt%SiO2陶瓷後與銀共燒855℃持溫時間30分鐘,其銀擴散距離為7.8µm,明顯比僅添加8wt%Al2O3陶瓷與銀共燒之銀擴散距離為22.7µm縮短,經由Fick’s second law計算擴散活化能,結果顯示8wt% Al2O3 + glass之activation energy為296 kJ/mole,而6wt% SiO2-doped Al2O3 + glass之activation energy為373 kJ/mole,SiO2添加可有效抑制銀擴散。
In recent years, microwave dielectric materials and components such as filters, resonators, high-frequency antenna, medium antenna, medium guided wave circuit, etc. have been developed rapidly. In addition, high-frequency microwave substrate had been widely applied in different high-frequency communication systems. To effective cost reduction, low temperature co-firing ceramic (LTCC) technology is developed for fabrication of microwave dielectric materials and components. However, the silver diffusion happens easily during sintering for a co-firing with microwave dielectric ceramic and silver electrode. An reduced silver diffusion between microwave dielectric ceramic and Ag-electrode is an important issue for LTCC development.
In this work, the low-k microwave materials using x wt% Al2O3 doped CaO-Al2O3-B2O3-SiO2 (x=0~30) (Al2O3 + glass) and x wt% SiO2 quartz (x = 0 ~ 6) doped CaO-Al2O3-B2O3-SiO2 glass were co-fired with silver electrode. The results show that the higher sintering temperature and the longer holding time increase silver diffusion and SiO2 doping can inhibit silver diffusion. the mechanical strength increases to 11.8 kpa and the dielectrical properties including k and Df values are 5.6 and 0.124, respectively. The 6 wt% SiO2 doped CaO-Al2O3-B2O3-SiO2 glass shows a silver diffusion distance ~ 7.8μm, which was shorter than that of 8wt% Al2O3 doped CaO-Al2O3-B2O3-SiO2 glass with a diffusion distance ~ 22.7μm. Meanwhile, the calculation of activation energies for the 8wt% Al2O3 + glass and 6wt% SiO2-8wt%Al2O3 co-doped glass are 296 kJ/mole and 373 kJ/mole, respectively. The CaO-Al2O3-B2O3-SiO2 glass with 6wt% SiO2-8wt%Al2O3 co-doping shows higher activation energy and restricts silver diffusion due to SiO2 addition.
目 錄
明志科技大學碩士學位論文指導教授推薦書..... i
明志科技大學碩士學位論文口試委員審定書..... ii
誌謝..... iii
中文摘要..... iv
英文摘要..... v
目錄..... vii
圖目錄..... xi
表目錄..... xiv
第一章 緒論..... 1
第二章 文獻回顧..... 2
2-1微波介電陶瓷介紹與國內外研究現況..... 2
2-1-1 微波介電陶瓷介紹..... 2
2-1-2 微波介電陶瓷低介電常數材料開發現況..... 3
2-2 摻雜用之陶瓷特性介紹..... 4
2-3 LTCC微波材料與銀電極共燒..... 5
2-3-1 電極銀擴散..... 5
第三章 實驗方法與步驟..... 10
3-1 材料製備..... 10
3-1-1 玻璃粉體製備..... 10
3-1-2 玻璃添加陶瓷體製備..... 10
3-1-3 聚焦離子束(FIB)切割試片..... 10
3-2 材料分析之設備..... 13
3-2-1 光學顯微鏡進行銀擴散觀察之分析..... 13
3-2-2阿基米德方法量測進行密度分析..... 14
3-2-3 萬能試驗機進行機械強度之量測 ..... 16
3-2-4熱分析儀進行DSC-TG之量測..... 17
3-2-5 以 X-ray分析儀進行相結構之測定..... 17
3-2-6 穿透式電子顯微鏡(TEM)進行微觀結構之分析..... 18
第四章 結果與討論..... 21
4-1 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷性質分析..... 21
4-1-1 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷之DSC熱分..... 21
4-1-2 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷燒結後材料密度與孔隙率分析..... 22
4-1-3 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷燒結後機械強度分析..... 23
4-1-4 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷後燒結之XRD結構分析..... 23
4-1-5 CaO-Al2O3-B2O3-SiO2玻璃添加x wt% Al2O3陶瓷後燒結之SEM微觀分析..... 24
4-1-6 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷後燒結之TEM微觀分析..... 27
4-1-7 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷後與銀共燒後之銀擴散OM微觀分析..... 29
4-1-8 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷後與銀共燒之介電性質分析..... 29
4-1-9 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷後與銀共燒之銀擴散活化能計算..... 31
4-2 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷性質分析
4-2-1 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後之DSC熱分析..... 32
4-2-2 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後之機械強度分析..... 33
4-2-3 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後燒結之XRD結構分析..... 33
4-2-4 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後與銀共燒後之銀擴散OM微觀分析..... 34
4-2-5 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後與銀共燒後之SEM-EDS line scan分析..... 35
4-2-6 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷燒結後之介電特性分析..... 36
4-2-7 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷後與銀共燒後之銀擴散活化能計算..... 37
4-3 CaO-Al2O3-B2O3-SiO2玻璃摻雜Al2O3陶瓷及SiO2陶瓷性質比較分析
4-3-1 CaO-Al2O3-B2O3-SiO2玻璃摻雜Al2O3陶瓷及SiO2陶瓷後之DSC熱分析..... 38
4-3-2 CaO-Al2O3-B2O3-SiO2玻璃摻雜Al2O3陶瓷及SiO2陶瓷燒結後機械強度分析..... 39
4-3-3 CaO-Al2O3-B2O3-SiO2玻璃摻雜Al2O3陶瓷及SiO2陶瓷與銀共燒後之OM微觀分析..... 39
4-3-4 CaO-Al2O3-B2O3-SiO2玻璃共摻雜Al2O3陶瓷及SiO2陶瓷燒結後之SEM-EDS line scan微觀分析..... 40
4-3-5 CaO-Al2O3-B2O3-SiO2玻璃摻雜Al2O3陶瓷及SiO2陶瓷燒結後之介電性質分析..... 41
4-3-6 CaO-Al2O3-B2O3-SiO2玻璃單獨添加Al2O3陶瓷、SiO2陶瓷及共摻雜Al2O3陶瓷及SiO2陶瓷燒結後之銀擴散活化能計算..... 41
4-4 CaO-Al2O3-B2O3-SiO2玻璃分別添加Al2O3陶瓷、SiO2陶瓷與共摻雜Al2O3陶瓷及SiO2陶瓷燒結後之物理性及銀擴散行為比較與探討..... 42
第五章 結論..... 45
參考文獻..... 46

圖目錄
Fig. 2-1 CaO-Al2O3-B2O3-SiO2銀擴散SEM-image及SEM-EDS元素分析..... 6
Fig. 2-2 CaO-Al2O3-B2O3-SiO2玻璃與銀共燒於900oC之cross section的銀擴散mapping元素分析..... 7
Fig. 2-3 不同莫爾氧化銀添加於CaO-Al2O3-B2O3-SiO2之熱示差DSC分析,顯示較多氧化銀添加會導致銀擴散,進而降低玻璃軟化點與結晶溫度(CAG0:0 mol% Ag2O;CAG2:2 mol% Ag2O;CAG5:5 mol% Ag2O)..... 7
Fig. 2-4 不同莫爾氧化銀添加於CaO-Al2O3-B2O3-SiO2之黏度分析,顯示較多氧化銀添加會導致玻璃黏度降低,可增加玻璃流動性,但也意味著銀擴散更加嚴重 (CAG0:0 mol% Ag2O;CAG5:5 mol% Ag2O)..... 8
Fig. 2-5 BaNd2Ti4O12(BNT)+ZnO–B2O3(ZB)系統HALT測試..... 9
Fig. 3-1 前製程:玻璃粉備製..... 12
Fig. 3-2 玻璃加陶瓷filler燒結流程 ..... 12
Fig. 3-3 JFC-1600 鍍白金機..... 14
Fig. 3-4 Hitachi S-4800 FE-SEM..... 14
Fig. 3-5 XS 125A-SCS先進標準型天秤及阿基米德測試治具..... 15
Fig. 3-6 量測脆性陶瓷材料的三點抗彎折作用示意圖..... 16
Fig. 3-7 MTS Insight 萬能材料試驗機..... 16
Fig. 3-8 NETZSCH STA 409 PC 同步熱分析儀..... 17
Fig. 3-9 Rigaku, Japan X-Ray繞射儀..... 18
Fig. 3-10 D500i凹窩研磨機..... 19
Fig. 3-11 Japan System 691CS離子減薄機..... 19
Fig. 3-12 JEM-2100 LaB6 高解析穿透式電子顯微鏡..... 19
Fig. 4-1 CaO-Al2O3-B2O3-SiO2玻璃添加Al2O3陶瓷之DSC熱分析..... 21
Fig. 4-2 CaO-Al2O3-B2O3-SiO2 玻璃添加不同比例Al2O3並於900℃燒結30分鐘之體密度分析..... 22
Fig. 4-3 CaO-Al2O3-B2O3-SiO2 玻璃添加不同比例Al2O3並於900℃燒結30分鐘之孔隙率分析..... 22
Fig. 4-4 CaO-Al2O3-B2O3-SiO2 玻璃添加不同比例Al2O3並於900℃燒結30分鐘之機械強度..... 23
Fig. 4-5 CaO-Al2O3-B2O3-SiO2玻璃添加不同比例Al2O3並於900℃燒結30分鐘之Xray分析圖..... 24
Fig. 4-6 (a) 0wt% (b) 5wt% (c) 8wt% (d) 12wt% (e) 15wt% (f) 20wt% (g) 30wt% 之Al2O3添加於CaO-Al2O3-B2O3-SiO2 玻璃並於900℃燒結30分鐘之SEM照片..... 25
Fig. 4-7 CaO-Al2O3-B2O3-SiO2玻璃添加8wt% Al2O3與銀共燒855℃ 燒結時間分別為(a)0.5hr、(b)1hr、(c)2hr及(d)4hr..... 26
Fig. 4-8 CaO-Al2O3-B2O3-SiO2玻璃添加8wt%Al2O3與銀共燒0.5hr,溫度分別為(a)855℃、(b)870℃、(c)885℃及(d)900℃..... 27
Fig. 4-9 CaO-Al2O3-B2O3-SiO2玻璃添加不同比例Al2O3並於900℃燒結30分鐘之TEM全貌圖、a為玻璃處之DP圖、b為晶粒邊界處之DP圖、c為晶粒之DP圖..... 28
Fig. 4-10 (a)TEM-EDS線掃描之Al2O3與SiO2元素分析圖及(b)TEM-EDS線掃描之元素分析位置圖..... 28
Fig. 4-11 CaO-Al2O3-B2O3-SiO2 玻璃添加8wt% Al2O3與銀共燒之OM電子顯微鏡觀察..... 29
Fig. 4-12 CaO-Al2O3-B2O3-SiO2玻璃添加不同比例Al2O3並於900℃燒結30分鐘之介電常數..... 30
Fig. 4-13 CaO-Al2O3-B2O3-SiO2玻璃添加不同比例Al2O3並於900℃燒結30分鐘之損耗係數..... 30
Fig. 4-14 CaO-Al2O3-B2O3-SiO2玻璃添加8wt% Al2O3陶瓷與銀共燒後之銀擴散活化能計算..... 32
Fig. 4-15 CaO-Al2O3-B2O3-SiO2玻璃添加SiO2陶瓷之DSC熱分析..... 33
Fig.4-16 CaO-Al2O3-B2O3-SiO2 玻璃與添加6wt% SiO2陶瓷粉與100% SiO2粉末做XRD結構分析..... 34
Fig. 4-17 CaO-Al2O3-B2O3-SiO2玻璃分別添加2wt%、4wt%、6wt% SiO2及8wt% Al2O3與銀共燒之OM電子顯微鏡觀察..... 34
Fig. 4-18 (a)2wt% SiO2 (b) 4wt% SiO2 (c) 6wt% SiO2 添加於玻璃中與銀共燒燒結855℃之SEM EDS Line scan觀察..... 35
Fig. 4-19 6wt% SiO2添加於玻璃中與銀共燒燒結(a) 855℃ (b) 870℃ (c) 885℃ (d) 900℃之SEM EDS Line scan觀察..... 36
Fig. 4-20 CaO-Al2O3-B2O3-SiO2玻璃添加不同比例之SiO2陶瓷後與銀共燒燒結銀擴散活化能計算..... 37
Fig. 4-21玻璃分別添加 8wt% Al2O3陶瓷及6wt% SiO2 陶瓷DSC分析..... 38
Fig. 4-22 CaO-Al2O3-B2O3-SiO2玻璃分別添加6wt%、8wt% Al2O3+6wt% SiO2及8wt% Al2O3與銀共燒之OM電子顯微鏡觀察..... 39
Fig. 4-23 8wt% Al2O3+6wt% SiO2試片與銀共燒燒結溫度為(a) 855℃ (b) 870℃ (c) 885℃(d)900℃之試片SEM EDS Line scan觀察..... 40
Fig. 4-24 CaO-Al2O3-B2O3-SiO2玻璃添加8wt% Al2O3及6wt% SiO2陶瓷後與銀共燒燒結銀擴散活化能計算..... 41
Fig. 4-25 CaO-Al2O3-B2O3-SiO2玻璃分別8wt% Al2O3陶瓷及6wt% SiO2 陶瓷之DSC熱分析..... 43
Fig. 4-26 (a)玻璃添加 8wt% Al2O3 (b)玻璃添加 6wt% SiO2 (c) 玻璃共摻8wt% Al2O3及6wt% SiO2陶瓷試片SEM EDS Line scan比較..... 44

表目錄
Table 2-1 Al2O3陶瓷與Glass之高頻介電常數、莫氏硬度、熔點、抗彎強度與導熱係數..... 5
Table 2-2不同莫爾氧化銀添加於CaO-Al2O3-B2O3-SiO2玻璃之微波介電特性分析..... 9
Table 3-1 CaO-Al2O3- B2O3-SiO2玻璃粉與Al2O3配置比例..... 11
Table 3-2 CaO-Al2O3- B2O3-SiO2玻璃粉與SiO2配置比例..... 11
Table 3-3 CaO-Al2O3- B2O3-SiO2玻璃粉與Al2O3及SiO2配置比例..... 11
Table 3-4材料製作之設備..... 13
Table 3-5檢測之儀器名稱、來源與用途..... 20
Table 4-1誤差函數表..... 31
Table 4-2 CaO-Al2O3-B2O3-SiO2分別8wt% Al2O3、6wt% SiO2及8wt% Al2O3與6wt% SiO2添加之介電特性比較..... 43
Table 4-3 CaO-Al2O3-B2O3-SiO2分別8wt% Al2O3、6wt% SiO2及8wt% Al2O3與6wt% SiO2添加之機械強度比較..... 43
Table 4-4 CaO-Al2O3-B2O3-SiO2分別8wt% Al2O3、6wt% SiO2及8wt% Al2O3與6wt% SiO2添加之活化能比較..... 43

參考文獻
[1] Pan, C. L.,” Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics.” Shium, C. L. and Huang, S. J., Materials Chemistry and Physics., 111-115, Jul.2003.
[2] Kim, S.” Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. Journal of the European Ceramic Society”., H., Cho, D. W., Hong, S. Y. and Yoon, K. S., 2549-2552, 2003.
[3] Chen, X.”High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system. Journal of the European Ceramic Society.,” M., Sun, Y. H. and Zheng, X. H., 1571-1575, 2003.
[4] Kim, H. T.,”Low-temperature sintering and microwave dielectric properties of zinc metatitanate–rutile mixtures using boron. J. Am. Ceram. Soc.,” Kim, S. H., Nahm, S., Byun, J. D. and Kim, Y., 3043–3048, Aug.1999.
[5] Huang, W., “Microwave dielectric properties of LTCC materials consisting of glass–Ba2Ti9O20 composites. J. Eur. Ceram. Soc.,” Liu, K. S., Chu, L. W., Hsiue, G. H. and Lin, I. N., 2559–2563, Feb.2003.
[6] Zhang, Y. C., “Effects of additives on microstructures and microwave dielectric properties of ZnNb2O6 ceramics. Mater. Sci. Eng. B,” Li, L. T., Yue, Z. X. and Gui, Z. L., 282–285, Sep.2003.
[7] Kim, D. W.,” Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaNb2O6 mixtures for LTCC applications. J. Eur. Ceram. Soc.,” Hong, K. S., Yoon, C. S. and Kim, C. K., 2597–2601, Feb.2003.
[8] Cho, I. S.,”Low-temperature sintering and microwave dielectric properties of BaO•(Nd1−xBix)2O3•4TiO2 by the glass additions. Ceram. Int.,” Kim, D.W., Kim, J. R. and Hong, K. S., 1181–1185, Mar.2004.
[9] Borisevich, A. Y., “Effect of doping on the sintering and dielectric properties of M-phase Li1+x−yNb1−x−3yTix+4yO3 ceramics. J. Am. Ceram. Soc.,” Davies, P. K., 1047–1052, Aug.2004.
[10] Shin, H. K.,”Phase evolution and dielectric properties of MgTiO3–CaTiO3-based ceramic sintered with lithium borosilicate glass for application to low-temperature co-fired ceramics. J. Am. Ceram. Soc.,” Shin, H., Cho, S. Y. and Hong, K. S., 2461–2465,Aug. 2005.
[11] Zhang, Q. L.,”Sintering and microwave dielectric properties of LTCC–zinc titanate multilayers. Mater. Lett.,” Yang, H., Zou, J. L. and Wang, H. P., 880–884, Sep.2005.
[12] Ding, S.”Microwave dielectric properties of (Bi1−xRx)NbO4 ceramics (R = Ce, Nd, Dy, Er). J. Eur. Ceram. Soc.,” H., Yao, X., Mao, Y. and Liu, P. L., 2003–2005, Feb.2006.
[13] Lim, J. B.,“Effect of BaCu(B2O5) on the sintering and microwave dielectric properties of BaO–Ln2O3–TiO2 (Ln = Sm, Nd) cermics. Mater. Res. Bull.,” Cho, K. H., Nam, S., Paik, J. H. and Kim, J. H., 1868–1874, Apr.2006.
[14] Kim, M. H.,” Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc.,” Jeong, Y. H., Nahm, S., Kim, H. T. and Lee, H. J., 2139–2142, Feb.2006.
[15] Tong, J. X.,”Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3−δ ceramics for LTCC applications. J. Am. Ceram. Soc.,” Zhang, Q. L.,Yang, H. and Zou, J. L., 845–849, Sep.2007.
[16] Tummala, R. R., “Ceramic and glass–ceramic packaging in the 1990s. J. Am. Ceram. Soc.,” 895–908, Jul.1991.
[17] Knickerbocker, S. H.,”Cordierite glass–ceramics for ceramic packaging. Am. Ceram. Soc. Bull.,” Kumar, A. H. and Herron, L. W., 90–95. 1993.
[18] Chang, C. R.”Crystallization kinetics and mechanism of lowdielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc., “Jean, J. J., 1725–1732, Aug.1999.
[19] Zhu, H. K.,“Study on properties of CaO–B2O3–SiO2 system glass–ceramic. Mater. Res. Bull.,” Liu, M., Zhou, H. Q., Li, L. Q. and Lv, A. G., 1137–1144, Apr.2007.
[20] Imanka, Y.” Influence of shrinkage mismatch between copper and ceramics on dimensional control of the multilayer ceramic circuit board. J. Ceram. Soc. Jpn. Int. Ed.,” Kamehara, N., 558–561, 1992.
[21] Steinberg, J. I.,”Low-temperature co-fired tape dielectric material systems for multilayer interconnections, advances in ceramics. In Multilayer Ceramic Devices, 19, ed. J. B. Blum and W. R. Canon. American Ceramic Society,” Horowitz, S. J. and Bacher, R. J., Westerville,OH., 31–39, 1986.
[22] Jean, J. J.”Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic. J. Am. Ceram. Soc.,” Fang, Y. C.,1354–1360, Aug.2001.
[23] Dai, S. X.,”Use of titanates to achieve a temperature-stable low-temperature co-fired ceramic dielectric for wireless applications. J. Am. Ceram. Soc.,” Huang, R. F. and Wilcox, D. L., 828–832, Aug.2002.
[24] Jantunen, H.,”Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc.,” Rautioaho, R., Uusim¨aki, A. and Lepp¨avuori, S., 2331–2336, Feb.2000.
[25] 馮奎智, “Development and characterization of CaMgSi2O6 glass-ceramic as low-K microwave dielectrics”, 博士論文, 國立台灣科技大學, 2013.
[26] Shim, K. B.,” Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications. Journal of materials science,” Cho, N. T., and Lee, S. W., 813– 820, Mar.2000.
[27] Eberstein, M.,” Influences of the glass phase on densification, microstructure, and properties of low-temperature co-fired ceramics, Int. J. Appl. Ceram. Technol.,” Rabe, T. and Schiller, W. A., 428–436, Mar.2006.
[28] Shih, Y. T.,” Failure mechanism of a low-temperature-cofired ceramic capacitor with an inner Ag electrode, J. Am. Ceram. Soc.,” Jean, J. H. and Lin, S. C., 3278–3283, Sep.2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊