跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:菲斯雅
研究生(外文):FRESHSYA ZATA LINI
論文名稱(外文):Effects of Templating Molecules of Sodium Benzoate, 1:1 Co-crystal of Benzoic Acid - Sodium Benzoate, and 2:1 Co-crystal of Benzoic Acid - Sodium Benzoate on the Crystallization Kinetics of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate
指導教授:李度李度引用關係
指導教授(外文):Tu Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:129
中文關鍵詞:共晶
外文關鍵詞:Co-crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
製藥工業中, 製藥工業中, 65% 以上的新候選藥 物其 水溶性 極低,可 通過 將一 活性藥物成分( 活性藥物成分( API) 與一共形成體結合共晶( 形成體結合共晶( 形成體結合共晶( 形成體結合共晶( Co-crystal),藉此提升 ),藉此提升 ),藉此提升 高端產物 高端產物 的純化 效果以及藥物的 效果以及藥物的 效果以及藥物的 生 物相容性 來克服 此問題。 問題。 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 形成體通過反應結晶的方式在積比 4:1的乙醇 -水溶液中產生共晶:將含有 溶液中產生共晶:將含有 溶液中產生共晶:將含有 17.22克 (0.141 莫耳)的苯甲酸溶液A在 50毫升的乙醇水溶液加入 含有 1.89克(0.047莫耳 ) 的氫氧化鈉 溶液B 在 6毫升的乙醇水溶液 。接著, 接著, 將溶液A與B混合後所形成的一 澄清飽和溶液 從室溫冷卻至 16度,直到晶體 開始形成 ,即溶液變得渾濁,表明該 系統 的成核引發 時間 (τ)結束 ,進而 可用於 推算出 一些 重要結晶成 核與長的動力 學和熱學參數 ,例如:界面能 (γ)、 Gibbs能障(ΔGcr)、 成核速率 (J)、 成核的臨界尺寸 (rc) 及相對生長速率 (RG),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( S0): 1.66、1.54、1.48與 1.43來 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 納、苯甲酸其 2:1以及 1:1的共結晶分別以 1.5的重量百分比添加至上述所提之溶液 A,重複量測其結晶的 ,重複量測其結晶的 動力學和熱參數 。此 系統的 成核引發 時間為 3到 40分鐘, 分鐘, 隨 著較高的初始過飽和比,可得到 著較高的初始過飽和比,可得到 著較高的初始過飽和比,可得到 較短的成核引發 短的成核引發 時間。 時間。 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 在更短的 時間內來引發共晶系統成核過程,提供較低在更短的 時間內來引發共晶系統成核過程,提供較低在更短的 時間內來引發共晶系統成核過程,提供較低Gibbs能障和成 障和成 核的臨界尺寸 , 以及較高的 成核速率 和相對生長速率。 相對生長速率。 不同條件下所形成的產物經由 不同條件下所形成的產物經由 PXRD、FTIR、DSC和 TGA的鑑定,證實 的鑑定,證實 的鑑定,證實 為苯甲酸 -苯甲酸鈉的 2:1共晶 。最後,這些 。最後,這些 。最後,這些 。最後,這些 研究 結果 說明不論是 從動力學或是熱的角度, 苯甲酸 -苯甲酸鈉的 2:1共晶的形成是可行
More than 65% of new drug candidates in pharmaceutical industry are poorly aqueous soluble drug. Co-crystallization technique can be used to overcome this problem through enhancing the high-end product purification and bioavailability of the drug by combining the API (Active Pharmaceutical Ingredient) with the co-former agent. In this work, co-crystallization of benzoic acid as the API with sodium benzoate as the co-former in co-solvent of 4:1 v/v of ethanol-water was generated by reaction crystallization method. A clear saturated solution was prepared by diluting Solution A containing 17.22 g (0.141 mol) of benzoic acid (HBz) in 50 mL of 4:1 v/v ethanol – water co-solvent and Solution B containing 1.89 g (0.047 mol) of sodium hydroxide (NaOH) in 6 mL of 2:1 v/v ethanol – water co-solvent. The solution then was cooled from room temperature to 16oC until the crystals were generated and the solution became turbid, indicating that the system had reached the end of the induction time, τ, of crystallization which can be used to determine some fundamental kinetic and thermodynamic parameters of nucleation and crystal growth, such as: the interfacial energy, γ, the Gibbs energetic barrier, ΔGcr, the nucleation rate, J, the critical size of stable nuclei, rc, and the relative growth rate, RG. All of these parameters were evaluated with different initial supersaturation ratio of the system, S0, which were: 1.66, 1.54, 1.48, and 1.43. To study the effect of templating in co-crystal system, about 1.5 wt % template of: sodium benzoate, 2:1 co-crystal of benzoic acid-sodium benzoate, and 1:1 co-crystal of benzoic acid-sodium benzoate were
iii
introduced for each system with different S0. In general, the induction times for all systems ranged from 3 to 40 minutes, where the higher S0 value gave the faster τ value. Moreover, introducing a template in the system gave a faster induction time, τ. ΔGcr and rc decreased, while J and RG increased on a faster induction time, indicating that co-crystallization thermodynamic and kinetic were directly related to the initial concentration of the drug. The final product of the solid crystals for each system was verified as 2:1 co-crystal of benzoic acid – sodium benzoate by PXRD, FTIR, DSC, and TGA. Finally, these results showed that co-crystallization of API, benzoic acid, with its co-former, sodium benzoate, was feasible, both kinetically and thermodynamically.
Table of Contents
摘要 i
Abstract ii
Acknowledgement iv
List of Figures viii
List of Tables xvi
List of Schemes xviii
Chapter 1 Introduction 1
11 Drug-Related Issues 1
12 Brief Introduction of Co-crystal 2
13 Brief Introduction of Benzoic Acid and Sodium Benzoate 4
14 Templating Crystallization 9
15 Synthesis of 2:1 Co-crystal of Benzoic Acid–Sodium Benzoate by Reaction Crystallization through Cooling Method 11
16 Conceptual Framework 16
17 References 18

Chapter 2 Experimental Materials and Methods 23
21 Materials 23
211 Chemicals 23
212 Solvents 24
22 Experimental Procedures 25
221 Solubility Measurement of the Basic Materials 25
222 Synthesis of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate by Reaction Crystallization 27
223 Co-crystallization of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate by Cooling Method 29
224 Templating Experiment 32
225 Stability Test 36
23 Analytical Measurements 37
231 Optical Microscopy (OM) 37
232 Fourier Transform Infrared (FTIR) Spectroscopy 38
233 Differential Scanning Calorimetry (DSC) 39
234 Thermal Gravimetric Analysis (TGA) 41
235 Powder X-ray Diffraction (PXRD) 42
236 Ultraviolet and Visible Spectrometer (UV-Vis) 43
24 References 44

Chapter 3 Results and Discussion 45
31 Crystallization Behavior of 2:1 Co-crystal of Benzoic Acid-Sodium Benzoate and the Templating Effect 47
311 Concentration Calibration 47
312 Induction Time Profile of Initial Supersaturation Ratio, So 48
313 Supersaturation and Nucleation Mechanism 50
314 Crystal Growth Mechanism 69
32 Characteristic Study of 2:1 Co-crystal of Benzoic Acid-Sodium Benzoate and the Effect of Templating 87
321 Crystallization Characteristic of Pure 2:1 Co-Crystal of Benzoic Acid - Sodium Benzoate 87
322 The Effect of Templating in Crystallization Characteristic of 2:1 Co-Crystal of Benzoic Acid - Sodium Benzoate 96
33 References 102
Chapter 4 Conclusions and Future Works 105
41 Conclusions 105
42 Future Works 107
43 References 108
1 Patel, V. R.; Agrawal, Y. K. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 81–87.
2 Sikarra, D.; Shukla, V.; Kharia, A.A.; Chatterjee, D.P. Techniques for Solubility Enhancement of Poorly Soluble Drugs: An Overview. J. Med. Pharm. Sci. 2012, 1, 1-22. 3 Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1-10.
4 Prohens, R.; Puigjaner, C. Crystal Engineering Studies: Polymorphs and Co-Crystals, 1st ed.; Centres Científics i Tecnològics. Universitat de Barcelona: Barcelona, BCN, 2012; pp. 3-4. 5 Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Kulkarni, P.V.; Sakhare, S.S. Co-Crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients. Indian J. Pharm. Sci. 2009, 71 (4), 359-370.
6 Kotak,U.; Prajapati,V.; Solanki, H.; Jani, G.; Jha, P. Co-Crystallization Technique Its Rationale and Recent Progress. J. Pharm. Pharm. Sci. 2015, 4 (04), 1484-1508.
7 Sheikh, A.Y.; Rahim, S.A.; Hammond, R.B.; Roberts, K.J. Scalable Solution Co-Crystallization: Case of Carbamazepine-Nicotinamide I. CrystEngComm 2008, 11 (3), 501-509. 8 Benzoic Acid and Salyclic Acid (topical). https://www.drugs.com/mtm/benzoic-acid-and-salicylic-acid-topical.html (accessed June 5, 2017)
9 Remington, J. P. The Science and Practice of Pharmacy, 2nd ed.; Lippincott Williams &
19
Wilkins: Maryland, Md., 2006; pp: 748. 10 Häberle, J.; Boddaert, N.; Burlina, A.; Chakrapani, A.; Dixon, M.; Huemer, M.; Karall, D.; Martinelli, D.; Crespo, P.; Santer, R.; Servais, A.; Valayannopoulos, V.; Lindner, M.; Rubio, V.; Dionisi-Vici, C. Suggested Guidelines for The Diagnosis and Management of Urea Cycle Disorders. Orphanet J. Rare Dis. 2012, 7 (32), 1-30.
11 World Health Organization. Benzoic Acid and Sodium Benzoate: Concise International Chemical Assessment Document No. 26; Geneva, GA, 2000.
12 Sim, G.A.; Robertson, J.M.; Goodwin, T.H. The Crystal and Molecular Structure of Benzoic Acid. Acta Crystallogr. 1955, 8 (3), 157-164.
13 Martin, T.; Gorelik, T.E..; Greim, D.; Butterhof, C.; Kolb, U.; Senker, J.; Breu, J. Microphase Separation Upon Crystallization of Small Amphiphilic Molecules: ‘Low’ Temperature Form II of Sodium Benzoate (E 211). CrystEngComm 2016, 31 (18), 5779–5966.
14 Deun, R.K.; Ramaekers, J.; Nockemann, P.; Hecke, K.V.; Meervelt, L.V.; Binnemans, K. Alkali Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains, J. Inorg. Chem. 2005, 2005 (3), 563-571.
15 Butterhof, C.; Martin,T.; Milius, W.; Breu, J. Microphase Separation with Small Amphiphilic Molecules: Crystal Structure of Preservatives Sodium Benzoate (E 211) and Potassium Benzoate (E 212). Z. Anorg. Allg. Chem. 2013, 639 (15), 2816–282.
16 Svoboda, S.; MacFhionnghaile, P.; McGinty, J, Connor, L.E.; Oswald, I. D.H.; Sefcik, J.
20
Continous Co-crystallization of Benzoic Acid and Isonicotinamide by Mixing-Induced Supersaturation: Exploring Oppurtunities Between Reactive and Antisolvent Crystallization Concepts. Cryst. Growth Des. 2017, 17 (4), 1902-1909.
17 Skovgaard, S.; Bond, A.D. Co-crystallisation of Benzoic Acid Derivatives with N-Containing Bases in Solution and by Mechanical Grinding: Stoichiometric Variants, Polymorphism and Twinning. CrystEngComm 2009, 11 (3), 444–453.
18 Butterhof,C.; Milius,W.; Breu, J. Influence of Cation Size on the Co-crystallisation of Benzoic Acid with Different Benzoates. Z. Anorg. Allg. Chem. 2013, 639 (2), 308-311.
19 Butterhof, C.; Barwinkel, K.; Senker, J.; Breu, J. Polymorphism in Co-Crystals: A Metastable Form of the Ionic Co-Crystal 2HBz.1NaBz Crystallized by Flash Evaporation. CrystEngComm 2012, 14 (20), 6744-6749.
20 Butterhoff, C.; Milius, W.; Breu, J. Co-Crystallization of Benzoic Acid with Sodium Benzoate: The Significance of Stoichiometry. CrystEngComm 2012, 14 (11), 3945 – 3950.
21 Lee, H.L.; Lee, T. Direct Co-crystal Assembly from Synthyesis to Co-crystallization. CrystEngComm 2015, 47 (17), 8967-9244.
22 Davey, R.J.; Garside, J. Phase Equilibria and Crystallization Techniques in from Molecules to Crystallizers, 1st ed.; Oxford University Press Inc.: Oxford, OFE, 2000; pp: 26.
23 Urbanus, J.; Roelands, C.P.M.; Horst, J.H.; Verdoes, D. Jansens, P.J. Screening for Templates that Promote Crystallization. Food Bioprod. Process 2008, 86 (2), 116–121.
24 Agnew, L. R.; McGlone, T.; Wheatcroft, H. P.; Robertson, A.; Parsons, A. R.; Wilson, C. C. Continuous Crystallization of Paracetamol (Acetaminophen) Form II: Selective Access to a Metastable Solid Form. Cryst. Growth Des. 2017, 17 (5), 2418–2427.
25 Agnew, L.R.; Cruickshank, D.L.; McGlone, T; Wilson, C.C. Controlled Production of the Elusive Metastable Form II of Acetaminophen (Paracetamol): A Fully Scalable Templating Approach in A Cooling Environment. Chem. Commun. 2016, 52 (46), 7368-7371.
26 Hornedo, N.R.; Nehm, S. J.; Seefeldt, K. F.; Torres, Y. P.; Falkiewicz, C. J. Reaction Crystallization of Pharmaceutical Molecular Complexes. Mol. Pharm. 2006, 3 (3), 362–367. 27 Pharmaceutical “Quality by Design” (QbD): An Introduction, Process Development and Applications.http://learnaboutgmp.com/pharmaceutical-quality-by-design-qbd-an introduction-process-development-and-applications. (accessed July 4, 2017)
28 Lee, T.; Chen, Y. H; Wang, Y. W. Effect of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate. Cryst. Growth Des. 2007, 8 (2), 415-426.
29 Quon, J, L.; Chadwick, K.; Wood, G.P.F.; Sheu, I.; Brettmann, B.K.; Myerson, A.S.; Trout, B. L. Templated Nucleation of Acetaminophen on Spherical Excipient Agglomerates. Langmuir 2013, 29 (10), 3292−3300. 30 Kuldipkumar, A.; Kwon, G. S.; Zhang, G. G. Z. Determining the Growth Mechanism of
22
Tolazamide by Induction Time Measurement. Cryst. Growth Des. 2007, 7 (2), 234–242.
31 Zhou,L.; Wang, Z.; Zhang, M.; Guo, M.; Xu, S.; Yin, Q. Determination of Metastable Zone and Induction Time of Analgin for Cooling Crystallization. Chin. J. Chem. Eng. 2017, 25 (3) 313–318.
32 Sako, K.; Furukawa, Y.; Nakajima, K. Advances in Crystal Growth Research, 1st ed.; Elsevier Science B.V.: Netherland, NL, 2001; pp: 406-407.
33 Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, OFE, 2001; pp: 181-187.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top