跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/13 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳炫呈
研究生(外文):CHEN,XUAN-CHENG
論文名稱:新穎多酸根或濃縮推電子基之菌綠素合成及性質探討
論文名稱(外文):Synthesis and Properties of Novel Bacteriochlorins Bearing Multi-Acids or Consolidated Donors
指導教授:林敬堯林敬堯引用關係
指導教授(外文):Lin,Ching-Yao
口試委員:吳景雲朱智謙
口試委員(外文):Wu,Jing-YunChu,Chih-Chien
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:128
中文關鍵詞:菌綠素染料敏化太陽能電池
外文關鍵詞:BacteriochlorinDye-sensitized Solar Cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文之主體大環乃針對本實驗室在2017年發表於J. Phys. Chem. C 的 LS-11染料進行結構上修飾,特別是對推電子基基團加以改性,成功合成出LS-44及LS-45兩支染料,推電子基基團乃是參考本實驗室在2016年Energy Environ. Sci.發表的LWP13及LWP14兩支染料。LS-11、LS-44與LS-45之拉電子基部分皆以benzoic acid作為錨定基團,LS-11的推電子基為4-ethynyl-N,N-dioctylaniline;LS-44為dioctylamino group;LS-45則為diarylamino group。另外還參考LS-01染料,成功合成出LS-01'及LS-01''兩支具有多酸根的染料,希望能提高它們的水溶性。
LS-44及LS-45兩支染料皆已通過核磁共振光譜儀1H-NMR及13C-NMR、MALDI TOF 質譜儀、元素分析 (EA) 的鑑定,確認了這兩支染料的結構及分子量。
藉由 DFT 理論計算、電化學性質、紫外光-可見光譜儀的協助,我們觀察到 LS-44 及 LS-45 染料具有成為染料敏化太陽能電池中敏化劑的優勢。

In this work, LS-44, LS-45, LS-01' and LS-01'' were successfully synthesized, characterized, and studied.
The macrocycles of this thesis are chromophores with structurally modified structures of the LS-11 dye (J. Phys. Chem. C, 2017). The electron-donating groups of the new dyes are based on those of our 2016 Energy Environ. Sci. paper, namely the LWP13 and LWP14 dyes. LS-11, LS-44 and LS-45 all use a benzoic acid as the anchor group. The electron-donating group of LS-11 is 4-ethynyl-N,N-dioctylaniline; LS-44 uses a dioctylamino group; and LS-45 uses a diarylamino group.
Both LS-44 and LS-45 dyes have been characterized by 1H and 13C-NMR, MALDI TOF mass spectrometry and elemental analysis.
Through DFT calculations, electrochemical measurements, UV-visible absorptions and fluorescent emissions, the experimental data show that the LS-44 and LS-45 dyes are adeguate dyes for dye-sensitized solar cells.

謝誌 i
摘要 ii
Abstract iii
目次 iv
表目次 vi
圖目次 vii
第一章 序論 1
1-1 前言 1
1-2 光動力療法 3
1-3 太陽能電池 4
第二章 染料敏化太陽能電池簡介 8
2-1 染料敏化太陽能電池簡介 8
2-2 染料敏化太陽能電池結構 9
2-3 染料敏化太陽能電池工作原理 14
2-4 染料光敏劑之研究 16
2-4-1 釕金屬錯合物光敏劑 16
2-4-2 有機分子敏化劑 18
2-4-3 紫質敏化劑 22
2-4-4 菌綠素敏化劑 28
2-5 染料堆疊情況 34
2-6 染料敏化太陽能電池之光伏性質測量 35
2-7 入射單色光子-電子轉換效率 (IPCE) 36
2-8 交叉耦合反應 (Sonogashira cross-coupling) 37
2-8 研究動機 38
第三章 實驗部分 40
3-1 實驗材料及儀器設備 40
3-2 管柱層析法 45
3-3 量子產率計算 45
3-4 莫耳吸收係數測定 46
3-5 染料光敏劑之合成步驟與鑑定資料 47
3-5-1 化合物 LS-00 合成步驟 47
3-5-2 化合物 Br-BC-TIPS 合成步驟 48
3-5-3 化合物 LS-44 合成步驟 49
3-5-4 化合物 LS-45 合成步驟 50
3-5-5 化合物 LS-01'合成步驟 51
3-5-6 化合物 LS-01''合成步驟 52
第四章 結果與討論 80
4-1 具濃縮推電子基團之菌綠素與紫質敏化劑 80
4-1-1 菌綠素敏化劑溶解於 THF 之紫外光-可見光吸收光譜 81
4-1-2 菌綠素敏化劑吸附於二氧化鈦薄膜之紫外光-可見光吸收光譜 83
4-1-3 菌綠素敏化劑溶於 THF 之螢光放射光譜 84
4-1-4 菌綠素敏化劑溶於 THF 之螢光量子產率 86
4-1-5 菌綠素敏化劑之 density-functional theory (DFT) 理論計算 88
4-1-6 菌綠素敏化劑之電化學性質 89
4-1-7 菌綠素敏化劑之電子能階 92
4-1-8 結論 95
4-2 新穎多酸根之菌綠素與紫質敏化劑 96
4-2-1 菌綠素敏化劑溶解於 THF 之紫外光-可見光吸收光譜 97
4-2-2 菌綠素敏化劑吸附於二氧化鈦薄膜之紫外光-可見光吸收光譜 99
4-2-3 菌綠素敏化劑溶於 THF 之螢光放射光譜 100
4-2-4 菌綠素敏化劑溶於 THF 之螢光量子產率 102
4-2-5 菌綠素敏化劑之 density-functional theory (DFT) 理論計算 104
4-2-6 菌綠素敏化劑之電化學性質 105
4-2-7 結論 107
參考文獻 108
附錄 113
附錄1 氫譜、碳譜與質譜 113
附錄2 元素分析 125


1.https://scitechvista.nat.gov.tw/c/sfW0.htm.
2.https://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_1.html
3.http://www.energyland.emsd.gov.hk/tc/energy/renewable/index.html.
4.https://www.ntuh.gov.tw/CMIO/medicaltreat/SitePages/PDT.aspx.
5.Maisch, T.; Bosl, C.; Szeimies, R. M.; Lehn, N.; Abels, C., Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother., 2005, 49, 1542-52.
6.Brun, P. H.; DeGroot, J. L.; Dickson, E. F.; Farahani, M.; Pottier, R. H., Determination of the in vivo pharmacokinetics of palladium-
bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy. Photochem. Photobiol. Sci., 2004, 3, 1006-10.
7.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Prog. Photovolt: Res. Appl., 2015, 23, 1-9.
8.https://read01.com/zh-tw/gDm5AN.html#.Wrtmc4huZPY.
9.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131, 6050-1.
10.Kearns, D.; Calvin, M., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys., 1958, 29, 950-951.
11.https://www.ft.com/content/9b9a2374-cec0-11e7-947e-f1ea5435bcc7, Alternative to silicon offers cheaper solar power.
12.Park, N.-G., Perovskite solar cells: an emerging photovoltaic technology. Mater. Today, 2015, 18, 65-72.
13.http://www.nrel.gov/ncpv/.
14.Bourdon, J., Spectral Sensitization of Chemical Effects in Solids1. J. Phys. Chem., 1965, 69, 705-713.
15.Nelson, R. C., Minority Carrier Trapping and Dye Sensitization1a,b. J. Phys. Chem., 1965, 69, 714-718.
16.Namba, S.; Hishiki, Y., Color Sensitization of Zinc Oxide with Cyanine Dyes1. J. Phys. Chem., 1965, 69, 774-779.
17.Tributsch, H. Gerischer. a. H., Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO·Einkristallen. Ber. Bunsen-Ges. Phys. Chem., 1968, 72, 437-445.

18.Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976, 261, 402-403.
19.O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
20.Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc., 2005, 127, 16835-47.
21.Mahmood, A., Triphenylamine based dyes for dye sensitized solar cells: A review. Solar Energy, 2016, 123, 127-144.
22.Gratzel, M., Photoelectrochemical cells. Nature, 2001, 414, 338-44.
23.http://www.aliva.com.tw/tech_36.html.
24.Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M., Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir, 2004, 20, 6514-7.
25.Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2001, 70, 85-101.
26.Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., CoII(dbbip)22+Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. J. Phys. Chem. B, 2001, 105, 10461-10464.
27.Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science., 2011, 334, 629-34.
28.Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242-7.
29.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc., 1993, 115, 6382-6390. 
30.Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid) ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem., 1999, 38, 6298-6305.
31.Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2003, 2 (6), 402-7.
32.Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E., Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem. Soc. Rev., 2011, 40, 1635-46.
33.Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc., 2006, 128, 14256-7.
34.Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P., Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy Environ. Sci., 2015, 8, 3192-3197.
35.Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun., 2015, 51, 15894-7.
36.Wang, C.-L.; Lin, P.-T.; Wang, Y.-F.; Chang, C.-W.; Lin, B.-Z.; Kuo, H.-H.; Hsu, C.-W.; Tu, S.-H.; Lin, C.-Y., Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. J. Phys. Chem. C, 2015, 119, 24282-24289.
37.Tsai, M.-C.; Wang, C.-L.; Chang, C.-W.; Hsu, C.-W.; Hsiao, Y.-H.; Liu, C.-L.; Wang, C.-C.; Lin, S.-Y.; Lin, C.-Y., A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. J. Mater. Chem. A, 2018, 6, 1995-2003.
38.Yang, G.; Tang, Y.; Li, X.; Agren, H.; Xie, Y., Efficient Solar Cells Based on Porphyrin Dyes with Flexible Chains Attached to the Auxiliary Benzothiadiazole Acceptor: Suppression of Dye Aggregation and the Effect of Distortion. ACS Appl. Mater. Interfaces, 2017, 9, 36875-36885.
39.Anderson, H. L., Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chem. Commun., 1999, 0, 2323-2330. 

40.Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Gratzel, M., Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J. Phys. Chem. B, 2005, 109, 15397-409.
41.Chang, Y. C.; Wang, C. L.; Pan, T. Y.; Hong, S. H.; Lan, C. M.; Kuo, H. H.; Lo, C. F.; Hsu, H. Y.; Lin, C. Y.; Diau, E. W., A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun., 2011, 47, 8910-2.
42.Wang, C.-L.; Zhang, M.; Hsiao, Y.-H.; Tseng, C.-K.; Liu, C.-L.; Xu, M.; Wang, P.; Lin, C.-Y., Porphyrins bearing a consolidated anthryl donor with dual functions for efficient dye-sensitized solar cells. Energy. Environ. Sci, 2016, 9, 200-206.
43.Eom, Y. K.; Kang, S. H.; Choi, I. T.; Yoo, Y.; Kim, J.; Kim, H. K., Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J. Mater. Chem. A, 2017, 5, 2297-2308.
44.Zhang, S.; Nagarjuna Reddy, M.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S., Synthesis of tailored hydrodipyrrins and their examination in directed routes to bacteriochlorins and tetradehydrocorrins. New J. Chem., 2017, 41, 11170-11189.
45.Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.; Holten, D., Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. J. Phys. Chem. C, 2007, 111, 15464-15478.
46.Gouterman, M., Spectra of porphyrins. J. Mol. Spectrosc, 1961, 6, 138-163.
47.Kim, H. J.; Lindsey, J. S., De novo synthesis of stable tetrahydroporphyrinic macrocycles: bacteriochlorins and a tetradehydrocorrin. J. Org. Chem., 2005, 70, 5475-86.
48.Wang, X.-F.; Koyama, Y.; Nagae, H.; Wada, Y.; Sasaki, S.-i.; Tamiaki, H., Dependence of Photocurrent and Conversion Efficiency of Titania-Based Solar Cell on the Qy Absorption and One Electron-Oxidation Potential of Pheophorbide Sensitizer. J. Phys. Chem. C, 2008, 112, 4418-4426.
49.Wang, X.-F.; Kitao, O.; Zhou, H.; Tamiaki, H.; Sasaki, S.-i., Efficient Dye-Sensitized Solar Cell Based on oxo-Bacteriochlorin Sensitizers with Broadband Absorption Capability. J. Phys. Chem. C, 2009, 113, 7954-7961.
50.Higashino, T.; Tsuji, Y.; Fujimori, Y.; Sugiura, K.; Ito, S.; Imahori, H., Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chem. Lett., 2015, 44, 1395-1397.
51.Chakraborty, S.; You, H.-C.; Huang, C.-K.; Lin, B.-Z.; Wang, C.-L.; Tsai, M.-C.; Liu, C.-L.; Lin, C.-Y., meso-Diphenylbacteriochlorins: Macrocyclic Dyes with Rare Colors for Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2017, 121, 7081-7087.
52.Kasha, M., Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res., 1963, 20, 55.
53.Sonogashira, K.; Tohda, Y.; Hagihara, N., A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
54.游蕙綺, 新穎性光敏劑之合成、性質、太陽能電池及聚合物應用 國立暨南國際大學 應用化學系 碩士論文.
55.Rurack, K.; Spieles, M., Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal. Chem., 2011, 83, 1232-42.
56.黃忠楷, 新穎性光敏劑之合成、性質及太陽能電池應用 國立暨南國際大學 應用化學系 碩士論文.
57.Chao, P.-S.; Kuo, M.-Y.; Lo, C.-F.; Hsieh, M.-H.; Cheng, Y.-H.; Wang, C.-L.; Lu, H.-Y.; Kuo, H.-H.; Hsiao, Y.-N.; Wang, C.-M.; Lin, C.-Y., Electrochemistry and spectroelectrochemistry of carboxyphenylethynyl porphyrins. J. Porphyrins Phthalocyanines, 2013, 17, 92-98.


電子全文 電子全文(網際網路公開日期:20280822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top