1.https://scitechvista.nat.gov.tw/c/sfW0.htm.
2.https://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_1.html
3.http://www.energyland.emsd.gov.hk/tc/energy/renewable/index.html.
4.https://www.ntuh.gov.tw/CMIO/medicaltreat/SitePages/PDT.aspx.
5.Maisch, T.; Bosl, C.; Szeimies, R. M.; Lehn, N.; Abels, C., Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother., 2005, 49, 1542-52.
6.Brun, P. H.; DeGroot, J. L.; Dickson, E. F.; Farahani, M.; Pottier, R. H., Determination of the in vivo pharmacokinetics of palladium-
bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy. Photochem. Photobiol. Sci., 2004, 3, 1006-10.
7.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Prog. Photovolt: Res. Appl., 2015, 23, 1-9.
8.https://read01.com/zh-tw/gDm5AN.html#.Wrtmc4huZPY.
9.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131, 6050-1.
10.Kearns, D.; Calvin, M., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys., 1958, 29, 950-951.
11.https://www.ft.com/content/9b9a2374-cec0-11e7-947e-f1ea5435bcc7, Alternative to silicon offers cheaper solar power.
12.Park, N.-G., Perovskite solar cells: an emerging photovoltaic technology. Mater. Today, 2015, 18, 65-72.
13.http://www.nrel.gov/ncpv/.
14.Bourdon, J., Spectral Sensitization of Chemical Effects in Solids1. J. Phys. Chem., 1965, 69, 705-713.
15.Nelson, R. C., Minority Carrier Trapping and Dye Sensitization1a,b. J. Phys. Chem., 1965, 69, 714-718.
16.Namba, S.; Hishiki, Y., Color Sensitization of Zinc Oxide with Cyanine Dyes1. J. Phys. Chem., 1965, 69, 774-779.
17.Tributsch, H. Gerischer. a. H., Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO·Einkristallen. Ber. Bunsen-Ges. Phys. Chem., 1968, 72, 437-445.
18.Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976, 261, 402-403.
19.O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
20.Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc., 2005, 127, 16835-47.
21.Mahmood, A., Triphenylamine based dyes for dye sensitized solar cells: A review. Solar Energy, 2016, 123, 127-144.
22.Gratzel, M., Photoelectrochemical cells. Nature, 2001, 414, 338-44.
23.http://www.aliva.com.tw/tech_36.html.
24.Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M., Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir, 2004, 20, 6514-7.
25.Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2001, 70, 85-101.
26.Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., CoII(dbbip)22+Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. J. Phys. Chem. B, 2001, 105, 10461-10464.
27.Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science., 2011, 334, 629-34.
28.Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242-7.
29.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc., 1993, 115, 6382-6390.
30.Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid) ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem., 1999, 38, 6298-6305.
31.Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2003, 2 (6), 402-7.
32.Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E., Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem. Soc. Rev., 2011, 40, 1635-46.
33.Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc., 2006, 128, 14256-7.
34.Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P., Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy Environ. Sci., 2015, 8, 3192-3197.
35.Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun., 2015, 51, 15894-7.
36.Wang, C.-L.; Lin, P.-T.; Wang, Y.-F.; Chang, C.-W.; Lin, B.-Z.; Kuo, H.-H.; Hsu, C.-W.; Tu, S.-H.; Lin, C.-Y., Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. J. Phys. Chem. C, 2015, 119, 24282-24289.
37.Tsai, M.-C.; Wang, C.-L.; Chang, C.-W.; Hsu, C.-W.; Hsiao, Y.-H.; Liu, C.-L.; Wang, C.-C.; Lin, S.-Y.; Lin, C.-Y., A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. J. Mater. Chem. A, 2018, 6, 1995-2003.
38.Yang, G.; Tang, Y.; Li, X.; Agren, H.; Xie, Y., Efficient Solar Cells Based on Porphyrin Dyes with Flexible Chains Attached to the Auxiliary Benzothiadiazole Acceptor: Suppression of Dye Aggregation and the Effect of Distortion. ACS Appl. Mater. Interfaces, 2017, 9, 36875-36885.
39.Anderson, H. L., Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chem. Commun., 1999, 0, 2323-2330.
40.Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Gratzel, M., Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J. Phys. Chem. B, 2005, 109, 15397-409.
41.Chang, Y. C.; Wang, C. L.; Pan, T. Y.; Hong, S. H.; Lan, C. M.; Kuo, H. H.; Lo, C. F.; Hsu, H. Y.; Lin, C. Y.; Diau, E. W., A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun., 2011, 47, 8910-2.
42.Wang, C.-L.; Zhang, M.; Hsiao, Y.-H.; Tseng, C.-K.; Liu, C.-L.; Xu, M.; Wang, P.; Lin, C.-Y., Porphyrins bearing a consolidated anthryl donor with dual functions for efficient dye-sensitized solar cells. Energy. Environ. Sci, 2016, 9, 200-206.
43.Eom, Y. K.; Kang, S. H.; Choi, I. T.; Yoo, Y.; Kim, J.; Kim, H. K., Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J. Mater. Chem. A, 2017, 5, 2297-2308.
44.Zhang, S.; Nagarjuna Reddy, M.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S., Synthesis of tailored hydrodipyrrins and their examination in directed routes to bacteriochlorins and tetradehydrocorrins. New J. Chem., 2017, 41, 11170-11189.
45.Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.; Holten, D., Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. J. Phys. Chem. C, 2007, 111, 15464-15478.
46.Gouterman, M., Spectra of porphyrins. J. Mol. Spectrosc, 1961, 6, 138-163.
47.Kim, H. J.; Lindsey, J. S., De novo synthesis of stable tetrahydroporphyrinic macrocycles: bacteriochlorins and a tetradehydrocorrin. J. Org. Chem., 2005, 70, 5475-86.
48.Wang, X.-F.; Koyama, Y.; Nagae, H.; Wada, Y.; Sasaki, S.-i.; Tamiaki, H., Dependence of Photocurrent and Conversion Efficiency of Titania-Based Solar Cell on the Qy Absorption and One Electron-Oxidation Potential of Pheophorbide Sensitizer. J. Phys. Chem. C, 2008, 112, 4418-4426.
49.Wang, X.-F.; Kitao, O.; Zhou, H.; Tamiaki, H.; Sasaki, S.-i., Efficient Dye-Sensitized Solar Cell Based on oxo-Bacteriochlorin Sensitizers with Broadband Absorption Capability. J. Phys. Chem. C, 2009, 113, 7954-7961.
50.Higashino, T.; Tsuji, Y.; Fujimori, Y.; Sugiura, K.; Ito, S.; Imahori, H., Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chem. Lett., 2015, 44, 1395-1397.
51.Chakraborty, S.; You, H.-C.; Huang, C.-K.; Lin, B.-Z.; Wang, C.-L.; Tsai, M.-C.; Liu, C.-L.; Lin, C.-Y., meso-Diphenylbacteriochlorins: Macrocyclic Dyes with Rare Colors for Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2017, 121, 7081-7087.
52.Kasha, M., Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res., 1963, 20, 55.
53.Sonogashira, K.; Tohda, Y.; Hagihara, N., A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
54.游蕙綺, 新穎性光敏劑之合成、性質、太陽能電池及聚合物應用 國立暨南國際大學 應用化學系 碩士論文.55.Rurack, K.; Spieles, M., Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal. Chem., 2011, 83, 1232-42.
56.黃忠楷, 新穎性光敏劑之合成、性質及太陽能電池應用 國立暨南國際大學 應用化學系 碩士論文.57.Chao, P.-S.; Kuo, M.-Y.; Lo, C.-F.; Hsieh, M.-H.; Cheng, Y.-H.; Wang, C.-L.; Lu, H.-Y.; Kuo, H.-H.; Hsiao, Y.-N.; Wang, C.-M.; Lin, C.-Y., Electrochemistry and spectroelectrochemistry of carboxyphenylethynyl porphyrins. J. Porphyrins Phthalocyanines, 2013, 17, 92-98.