|
Albee, A. J., Kwan, A. L., Lin, H., Granas, D., Stormo, G. D., & Dutcher, S. K. (2013). Identification of cilia genes that affect cell-cycle progression using whole-genome transcriptome analysis in Chlamydomonas reinhardtti. G3 (Bethesda), 3(6), 979-991. Barz, K. K. a. W. (1998). Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry, 47, 1045–1048. Berthold, P., Schmitt, R., & Mages, W. (2002). An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 153(4), 401-412. Bhattacharyya, S., Feferman, L., Borthakur, S., & Tobacman, J. K. (2014). Common food additive carrageenan stimulates Wnt/ beta-catenin signaling in colonic epithelium by inhibition of nucleoredoxin reduction. Nutr Cancer, 66(1), 117-127. Chan, S. C., Chang, Y. S., Wang, J. P., Chen, S. C., & Kuo, S. C. (1998). Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med, 64(2), 153-158. Chang, T.-S., Chao, S.-Y., & Chen, Y.-C. (2013). Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene. Process Biochemistry, 48(3), 426-429. Chang, T.-S., Ding, H.-Y., Tai, S. S.-K., & Wu, C.-Y. (2007). Mushroom tyrosinase inhibitory effects of isoflavones isolated from soygerm koji fermented with Aspergillus oryzae BCRC 32288. Food Chemistry, 105(4), 1430-1438. Chang, T. S. (2007). Two potent suicide substrates of mushroom tyrosinase: 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone. J Agric Food Chem, 55(5), 2010-2015. Chang, T. S. (2009). An updated review of tyrosinase inhibitors. Int J Mol Sci, 10(6), 2440-2475. Chang, T. S. (2014). Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int J Mol Sci, 15(4), 5699-5716. Chang, T. S., Ding, H. Y., & Lin, H. C. (2005). Identifying 6,7,4'-trihydroxyisoflavone as a potent tyrosinase inhibitor. Biosci Biotechnol Biochem, 69(10), 1999-2001. Chen, Y. C., Inaba, M., Abe, N., & Hirota, A. (2003). Antimutagenic activity of 8-hydroxyisoflavones and 6-hydroxydaidzein from soybean miso. Biosci Biotechnol Biochem, 67(4), 903-906. Chen, Y. C., Sugiyama, Y., Abe, N., Kuruto-Niwa, R., Nozawa, R., & Hirota, A. (2005). DPPH radical-scavenging compounds from dou-chi, a soybean fermented food. Biosci Biotechnol Biochem, 69(5), 999-1006. Cheng, L. J., & Cheng, T. S. (2012). Oxidative effects and metabolic changes following exposure of greater duckweed (Spirodela polyrhiza) to diethyl phthalate. Aquat Toxicol, 109, 166-175. Chibani, K., Wingsle, G., Jacquot, J. P., Gelhaye, E., & Rouhier, N. (2009). Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant, 2(2), 308-322. Dalais, F. S., Ebeling, P. R., Kotsopoulos, D., McGrath, B. P., & Teede, H. J. (2003). The effects of soy protein containing isoflavones on lipids and indices of bone resorption in postmenopausal women. Clinical endocrinology, 58(6), 704-709. Eklund, H., Gleason, F. K., & Holmgren, A. (1991). Structural and functional relations among thioredoxins of different species. Proteins, 11(1), 13-28. Funato, Y., Hayashi, T., Irino, Y., Takenawa, T., & Miki, H. (2013). Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1. Biochem Biophys Res Commun, 440(4), 737-742. Funato, Y., Michiue, T., Asashima, M., & Miki, H. (2006). The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol, 8(5), 501-508. Funato, Y., & Miki, H. (2007). Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal, 9(8), 1035-1057. Funayama, S., Anraku, Y., Mita, A., Komiyama, K., & Omura, S. (1989). Structural study of isoflavonoids possessing antioxidant activity isolated from the fermentation broth of Streptomyces sp. J Antibiot (Tokyo), 42(9), 1350-1355. Galvan, A., Gonzalez-Ballester, D., & Fernandez, E. (2007). Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. Adv Exp Med Biol, 616, 77-89. Gelhaye, E., Rouhier, N., & Jacquot, J. P. (2004). The thioredoxin h system of higher plants. Plant Physiol Biochem, 42(4), 265-271. Gelhaye, E., Rouhier, N., Navrot, N., & Jacquot, J. P. (2005). The plant thioredoxin system. Cell Mol Life Sci, 62(1), 24-35. Gonzalez-Ballester, D., de Montaigu, A., Galvan, A., & Fernandez, E. (2005). Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem, 340(2), 330-335. Guengerich, F. P. (1992). Cytochrome P450: advances and prospects. Faseb j, 6(2), 667-668. Gyoergy, P., Murata, K., & Ikehata, H. (1964). ANTIOXIDANTS ISOLATED FROM FERMENTED SOYBEANS (TEMPEH). Nature, 203, 870-872. He, L., Fullenkamp, D. E., Rivera, J. G., & Messersmith, P. B. (2011). pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun (Camb), 47(26), 7497-7499. Hirota, A., Inaba, M., Chen, Y. C., Abe, N., Taki, S., Yano, M., et al. (2004). Isolation of 8-hydroxyglycitein and 6-hydroxydaidzein from soybean miso. Biosci Biotechnol Biochem, 68(6), 1372-1374. Hirota, A., Taki, S., Kawaii, S., Yano, M., & Abe, N. (2000). 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines. Biosci Biotechnol Biochem, 64(5), 1038-1040. Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 87(3), 1228-1232. Kiriakidis, S., Hogemeier, O., Starcke, S., Dombrowski, F., Hahne, J. C., Pepper, M., et al. (2005). Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br J Nutr, 93(3), 317-323. Kite, G. C., Veitch, N. C., Boalch, M. E., Lewis, G. P., Leon, C. J., & Simmonds, M. S. (2009). Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry, 70(6), 785-794. Kneeshaw, S., Keyani, R., Delorme-Hinoux, V., Imrie, L., Loake, G. J., Le Bihan, T., et al. (2017). Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc Natl Acad Sci U S A. Komiyama, K., Funayama, S., Anraku, Y., Mita, A., Takahashi, Y., Omura, S., et al. (1989). Isolation of isoflavonoids possessing antioxidant activity from the fermentation broth of Streptomyces sp. J Antibiot (Tokyo), 42(9), 1344-1349. Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem, 8(7), 1749-1755. Kurooka, H., Kato, K., Minoguchi, S., Takahashi, Y., Ikeda, J., Habu, S., et al. (1997). Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics, 39(3), 331-339. Lamartiniere, C. A., Moore, J., Holland, M., & Barnes, S. (1995). Neonatal genistein chemoprevents mammary cancer. Experimental Biology and Medicine, 208(1), 120-123. Lee, J. H., & Lee, H. J. (2013). A daidzein metabolite, 6,7,4′-trihydroxyisoflavone inhibits cellular proliferation through cell cycle arrest and apoptosis induction in MCF10CA1a human breast cancer cells. Journal of the Korean Society for Applied Biological Chemistry, 56(6), 695-700. Lee, S. H., Baek, K., Lee, J. E., & Kim, B. G. (2016). Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation. Biotechnol Bioeng, 113(4), 735-743. Lemaire, S. D., & Miginiac-Maslow, M. (2004). The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res, 82(3), 203-220. Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., et al. (2016). An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. Plant Cell, 28(2), 367-387. Liu, G., Sun, L., Wang, S., Chen, C., Guo, T., Ji, Y., et al. (2011). Hydroxylation modification and free radical scavenging activity of puerarin-7-O-fructoside. Folia Microbiol (Praha), 56(4), 305-311. Lo, Y. L., Wang, W., & Ho, C. T. (2012). 7,3',4'-Trihydroxyisoflavone modulates multidrug resistance transporters and induces apoptosis via production of reactive oxygen species. Toxicology, 302(2-3), 221-232. Ma, C. H., Chen, B., Qi, H. Y., Li, B. G., & Zhang, G. L. (2004). Two pyranocoumarins from the seeds of Calophyllum polyanthum. J Nat Prod, 67(9), 1598-1600. Maeda, H., Fujii, Y., & Mihashi, Y. (2008). Diol-substituted boron complexes of dipyrrolyl diketones as anion receptors and covalently linked 'pivotal' dimers. Chem Commun (Camb)(36), 4285-4287. Marchal, C., Delorme-Hinoux, V., Bariat, L., Siala, W., Belin, C., Saez-Vasquez, J., et al. (2014). NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. Mol Plant, 7(1), 30-44. Matsuda, H., Morikawa, T., Xu, F., Ninomiya, K., & Yoshikawa, M. (2004). New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa. Planta Med, 70(12), 1201-1209. McMichael-Phillips, D. F., Harding, C., Morton, M., Roberts, S. A., Howell, A., Potten, C. S., et al. (1998). Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. The American journal of clinical nutrition, 68(6), 1431S-1435S. Meng, D., Cao, M., Oda, T., & Pan, J. (2014). The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. J Cell Sci, 127(Pt 2), 281-287. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), 245-250. Mitchell, D. R. (2007). The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv Exp Med Biol, 607, 130-140. Mohd Nazri, H. (2006). The extraction of antioxidant from soybean. Universiti Malaysia Pahang. Mossner, E., Iwai, H., & Glockshuber, R. (2000). Influence of the pK(a) value of the buried, active-site cysteine on the redox properties of thioredoxin-like oxidoreductases. FEBS Lett, 477(1-2), 21-26. Murphy, H.-j. W. a. P. A. (1994). Isoflavone Content in Commercial Soybean Foods.pdf. J. Agrie. Food Chem, 42, 1666-1673. Murphy, H.-J. W. a. P. A. (1996). Mass Balance Study of Isof. J. Agric. Food Chem., 44, 2377−2383. Nazir, K. H., Ichinose, H., & Wariishi, H. (2011). Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol, 77(9), 3147-3150. Nguyen, D. T., Hernandez-Montes, E., Vauzour, D., Schonthal, A. H., Rice-Evans, C., Cadenas, E., et al. (2006). The intracellular genistein metabolite 5,7,3',4'-tetrahydroxyisoflavone mediates G2-M cell cycle arrest in cancer cells via modulation of the p38 signaling pathway. Free Radic Biol Med, 41(8), 1225-1239. Nuruzzaman, M., Gupta, M., Zhang, C., Wang, L., Xie, W., Xiong, L., et al. (2008). Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics, 280(2), 139-151. Pandey, B. P., Roh, C., Choi, K. Y., Lee, N., Kim, E. J., Ko, S., et al. (2010). Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol Bioeng, 105(4), 697-704. Passi, S., & Nazzaro-Porro, M. (1981). Molecular basis of substrate and inhibitory specificity of tyrosinase: phenolic compounds. Br J Dermatol, 104(6), 659-665. Rharass, T., Lemcke, H., Lantow, M., Kuznetsov, S. A., Weiss, D. G., & Panakova, D. (2014). Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/beta-catenin pathway activation to facilitate cell differentiation. J Biol Chem, 289(40), 27937-27951. Roh, C., Choi, K.-Y., Pandey, B. P., & Kim, B.-G. (2009). Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. Journal of Molecular Catalysis B: Enzymatic, 59(4), 248-253. Roos, G., Garcia-Pino, A., Van Belle, K., Brosens, E., Wahni, K., Vandenbussche, G., et al. (2007). The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin. J Mol Biol, 368(3), 800-811. Roos, G., Geerlings, P., & Messens, J. (2010). The conserved active site tryptophan of thioredoxin has no effect on its redox properties. Protein Sci, 19(1), 190-194. Ros JR, R. ı.-L. o. J., Garcıa-Canovas F. (1993). Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J, 295, 309–312. Scotti, L., Bezerra Mendonca Junior, F. J., Magalhaes Moreira, D. R., da Silva, M. S., Pitta, I. R., & Scotti, M. T. (2012). SAR, QSAR and docking of anticancer flavonoids and variants: a review. Curr Top Med Chem, 12(24), 2785-2809. Shimogawara, K., Fujiwara, S., Grossman, A., & Usuda, H. (1998). High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics, 148(4), 1821-1828. Sizova, I., Fuhrmann, M., & Hegemann, P. (2001). A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene, 277(1-2), 221-229. Springsteen G, W. B. (2002). A detailed examination of boronic acid-diol complexation. Tetrahedron, 58, 5291–5300. Sugiyama, Y., Sakurai, Y., & Hirota, A. (2010). Isolation of 2,4,4'-trihydroxydeoxybenzoin and 3'-hydroxydaidzein from soybean miso. Biosci Biotechnol Biochem, 74(6), 1293-1294. Suppi, S., Kasemets, K., Ivask, A., Kunnis-Beres, K., Sihtmae, M., Kurvet, I., et al. (2015). A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater, 286, 75-84. Tai, S. S., Lin, C. G., Wu, M. H., & Chang, T. S. (2009). Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers. Int J Mol Sci, 10(10), 4257-4266. Tewtrakul, S., Subhadhirasakul, S., Cheenpracha, S., & Karalai, C. (2007). HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother Res, 21(11), 1092-1095. Tewtrakul, S., Subhadhirasakul, S., Tansakul, P., Cheenpracha, S., & Karalai, C. (2011). Antiinflammatory constituents from Eclipta prostrata using RAW264.7 macrophage cells. Phytother Res, 25(9), 1313-1316. Thuan, N. H., & Sohng, J. K. (2013). Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol, 40(12), 1329-1356. Tsuchihashi, R., Kodera, M., Sakamoto, S., Nakajima, Y., Yamazaki, T., Niiho, Y., et al. (2009). Microbial transformation and bioactivation of isoflavones from Pueraria flowers by human intestinal bacterial strains. J Nat Med, 63(3), 254-260. Umezawa, H., Tobe, H., Shibamoto, N., Nakamura, F., & Nakamura, K. (1975). Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and streptomyces. J Antibiot (Tokyo), 28(12), 947-952. Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Li, W., & Zhang, W. J. (2008). Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquat Toxicol, 87(2), 88-98. Wang, Z. X., Shi, X. X., Chen, G. R., Ren, Z. H., Luo, L., & Yan, J. (2006). A new synthesis of alpha-arbutin via Lewis acid catalyzed selective glycosylation of tetra-O-benzyl-alpha-D-glucopyranosyl trichloroacetimidate with hydroquinone. Carbohydr Res, 341(11), 1945-1947. Williams, M., Rainville, I. R., & Nicklas, J. A. (2002). Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. Environ Mol Mutagen, 39(1), 22-32. Ye, H., Xu, H., Yu, C., Dai, Y., Liu, G., Xu, W., et al. (2009). Hydroxylation of naringin by Trichoderma harzianum to dramatically improve its antioxidative activity. Enzyme and Microbial Technology, 45(4), 282-287. Zhang, R., Patena, W., Armbruster, U., Gang, S. S., Blum, S. R., & Jonikas, M. C. (2014). High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA. Plant Cell, 26(4), 1398-1409.
|