|
References 1. Hershko, A. and A. Ciechanover, The ubiquitin system. Annu Rev Biochem, 1998. 67: p. 425-79. 2. Pickart, C.M. and M.J. Eddins, Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 2004. 1695(1-3): p. 55-72. 3. Reyes-Turcu, F.E., K.H. Ventii, and K.D. Wilkinson, Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem, 2009. 78: p. 363-97. 4. Komander, D., M.J. Clague, and S. Urbé, Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 2009. 10: p. 550. 5. Bhattacharya, S. and M.K. Ghosh, Cell death and deubiquitinases: perspectives in cancer. Biomed Res Int, 2014. 2014: p. 435197. 6. D'Arcy, P., X. Wang, and S. Linder, Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther, 2015. 147: p. 32-54. 7. Pfoh, R., I.K. Lacdao, and V. Saridakis, Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer, 2015. 22(1): p. T35-54. 8. Yuan, T., et al., Inhibition of Ubiquitin-Specific Proteases as a Novel Anticancer Therapeutic Strategy. Front Pharmacol, 2018. 9: p. 1080. 9. Davis, M.I., et al., Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models. J Biol Chem, 2016. 291(47): p. 24628-24640. 10. Chuang, S.J., et al., 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep, 2018. 8(1): p. 3102. 11. Issaenko, O.A. and A.Y. Amerik, Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle, 2012. 11(9): p. 1804-17. 12. Huang, X. and V.M. Dixit, Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res, 2016. 26(4): p. 484-98. 13. Faesen, A.C., M.P. Luna-Vargas, and T.K. Sixma, The role of UBL domains in ubiquitin-specific proteases. Biochem Soc Trans, 2012. 40(3): p. 539-45. 14. Ye, Y., et al., Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009. 5(12): p. 1797-808. 15. Leung, I., et al., Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21. Proc Natl Acad Sci U S A, 2016. 113(31): p. 8705-10. 16. Sacco, J.J., et al., Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life, 2010. 62(2): p. 140-57. 17. Xiao, Z., P. Zhang, and L. Ma, The role of deubiquitinases in breast cancer. Cancer Metastasis Rev, 2016. 35(4): p. 589-600. 18. Stevenson, L.F., et al., The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J, 2007. 26(4): p. 976-86. 19. Graner, E., et al., The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 2004. 5(3): p. 253-61. 20. Arceci, A., et al., FOXM1 Deubiquitination by USP21 Regulates Cell Cycle Progression and Paclitaxel Sensitivity in Basal-like Breast Cancer. Cell Rep, 2019. 26(11): p. 3076-3086 e6. 21. Li, W., et al., The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis, 2018. 9(5): p. 482. 22. Peng, L., et al., Ubiquitin specific protease 21 upregulation in breast cancer promotes cell tumorigenic capability and is associated with the NOD-like receptor signaling pathway. Oncol Lett, 2016. 12(6): p. 4531-4537. 23. Qu, Q., et al., USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol, 2015. 36(7): p. 5415-23. 24. He, J., et al., Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis, 2019. 10(4): p. 285. 25. Hu, M., et al., Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J, 2005. 24(21): p. 3747-56. 26. Renatus, M., et al., Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure, 2006. 14(8): p. 1293-302. 27. Wright, C. and R.D. Moore, Disulfiram treatment of alcoholism. Am J Med, 1990. 88(6): p. 647-55. 28. Loi, C.M., et al., Dose-dependent inhibition of theophylline metabolism by disulfiram in recovering alcoholics. Clin Pharmacol Ther, 1989. 45(5): p. 476-86. 29. Hasinoff, B.B. and D. Patel, Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Arch Biochem Biophys, 2017. 633: p. 23-28. 30. Loo, T.W., M.C. Bartlett, and D.M. Clarke, Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm, 2004. 1(6): p. 426-33. 31. Diaz-Sanchez, A.G., et al., Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans. Molecules, 2016. 21(12). 32. Paranjpe, A., et al., Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis, 2014. 35(3): p. 692-702. 33. Lin, M.H., et al., Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res, 2018. 150: p. 155-163. 34. Jiao, Y., B.N. Hannafon, and W.Q. Ding, Disulfiram's Anticancer Activity: Evidence and Mechanisms. Anticancer Agents Med Chem, 2016. 16(11): p. 1378-1384. 35. Skrott, Z., et al., Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017. 552(7684): p. 194-199. 36. Karran, P. and N. Attard, Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer, 2008. 8(1): p. 24-36. 37. Yonetani, T. and H. Theorell, Studies on Liver Alcohol Hydrogenase Complexes. 3. Multiple Inhibition Kinetics in the Presence of Two Competitive Inhibitors. Arch Biochem Biophys, 1964. 106: p. 243-51. 38. Copeland, R.A., Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, Second Edition. 2000: Wiley. 39. Cheng, K.W., et al., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res, 2015. 115: p. 9-16. 40. Galkin, A., et al., Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. J Biol Chem, 2014. 289(15): p. 10502-9. 41. Bruning, A. and R.E. Kast, Oxidizing to death: disulfiram for cancer cell killing. Cell Cycle, 2014. 13(10): p. 1513-4. 42. Papaioannou, M., et al., Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience, 2013. 1(1): p. 21-9.
|