跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昕成
研究生(外文):Hsin-Cheng Lin
論文名稱:戒酒硫藥物與6-硫代鳥嘌呤對人類第二型與第二十一型專一性泛素水解酶抑制機轉探討
論文名稱(外文):Inhibition studies of human ubiquitin specific protease 2 and 21 by disulfiram and 6-thioguanine
指導教授:周記源林達顯
指導教授(外文):Chi-Yuan ChouTa-Hsien Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:47
中文關鍵詞:戒酒硫藥物6-硫代鳥嘌呤人類第二型專一性泛素水解酶人類第二十一型專一性泛素水解酶人類專一性泛素水解酶抑制劑
外文關鍵詞:disulfiram6-thioguaninehuman ubiquitin specific protease 2human ubiquitin specific protease 21human ubiquitin specific protease inhibitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
專一性泛素水解酶 (Ubiquitin-specific proteases) 為去泛素化酶 (Deubiquitinase) 分類中最大的家族,它們具有相似的催化domain結構和半胱氨酸蛋白酶的活性,研究發現專一性泛素水解酶在許多癌症中都被高度調控或大量的被表現,衍然為抑制癌症的重要標靶,然而截至目前,尚未有抑制專一性泛素水解酶的藥物能通過臨床檢驗。在人類專一性泛素水解酶的家族中,人類第二型與第二十一型專一性泛素水解酶各自在許多癌症中被高度調控,另一方面,它們在演化上被分類在很小的群集且擁有極度相似的catalytic domain結構,先前的研究指出在難以被診斷且惡性的三陰性乳癌 (Triple negative breast cancer) 細胞中,沉默人類第二型與第二十一型專一性泛素水解酶的基因可以抑制腫瘤細胞的擴散,因此,開發抑制人類第二型與第二十一型專一性泛素水解酶的藥物能得利於它們的結構相似性,並用於治療與兩種水解酶皆相關的癌症。在本篇研究中,我們第一個發現臨床的戒酒用藥,戒酒硫(disulfiram),對於人類第二型與第二十一型專一性泛素水解酶皆具有競爭型的抑制效果,並標示了戒酒硫在兩個專一性泛素水解酶的catalytic domain上可能的結合位,而在戒酒硫藥物與白血病用藥6-硫代鳥嘌呤(6TG)對於人類第二型與第二十一型專一性泛素水解酶的雙抑制實驗中,兩個藥物對於兩個專一性泛素水解酶皆具有協同抑制作用,顯示出針對與兩個專一性泛素水解酶皆相關的癌症,可以合併使用兩個藥物作為治療方式,另外,戒酒硫與6-硫代鳥嘌呤對於人類第二型與第二十一型專一性泛素水解酶皆具有不可逆的抑制效果。綜合以上,我們第一個發現戒酒硫藥物能作為專一性泛素水解酶的抑制劑,亦提供了證據以利臨床使用戒酒硫與6-硫代鳥嘌呤來治療人類第二型與第二十一型專一性泛素水解酶皆被大量表現的癌症作為參考。
Ubiquitin-specific proteases (USPs) are the largest subfamily of deubiquitinases (DUBs), they share a structurally similar catalytic domain and are mostly with cysteine protease activity. USPs have emerged to be attractive anticancer targets as many USPs were found upregulated or overexpressed in a variety of tumors, however, no inhibitors targeting USPs have entered clinical trial so far. Among the USP family, USP2 and USP21 were respectively found upregulated in various cancers. On the other hand, they were phylogenetically categorized in a small cluster and display extremely high similarity in the catalytic domain protein structure. Previous studies have shown silencing either USP2 or USP21 in triple negative breast cancer (TNBC), an aggressive subtype of breast cancer with poor prognosis, inhibits tumor metastasis. Thus, discovering drugs targeting both USPs gains advantage from their structure similarity and serve as a desirable therapeutic strategy to treat cancers correlated to both USPs. In this study, we first reported disulfiram, a clinically available alcohol-aversive drug, is a competitive inhibitor for both USP2 and USP21, and indicated the potential binding sites within the USP catalytic domain. Synergistic inhibition of USP2 and USP21 by disulfiram and 6-thioguanine (6TG), a clinically available leukemia drug, suggested the potential of using these two clinically available drugs for combination treatment on diseases correlated to both USPs. Additionally, both drugs exhibit slow-binding inhibition and irreversibility of enzyme activity on USP2 and USP21. Taken together, our findings demonstrate disulfiram is an inhibitor for USPs and provide evidence for clinical evaluation of using disulfiram with 6TG as combination treatment on both USP2 and USP21 upregulated cancers.
Table of Contents
Acknowledgement i
Table of Contents ii
List of Figures iv
List of Tables v
List of abbreviations vi
Chinese Abstract vii
Abstract viii
Chapter 1 – Introduction 1
1.1 Ubiquitination 1
1.2 Deubiquitinating enzymes, DUBs 1
1.3 Ubiquitin specific proteases, USP 2
1.4 Structure correlation between USP2 and USP21 2
1.5 Roles of USP2 and USP21 in cancers 3
1.6 Old drugs as USP2 and USP21 inhibitors 4
1.7 Study aims 5
Chapter 2 - Materials and methods 6
2.1 Chemicals, enzymes, and reagents 6
2.2 Protein preparation 8
2.2.1 Construction of USP2 and USP21 expression vectors 8
2.2.2 Site-Directed mutagenesis 8
2.2.3 Expression and purification of human USP2 and USP21 9
2.3 Functional and inhibition studies 10
2.3.1 Deubiquitination (DUB) assay 10
2.3.2 Steady-state kinetic analysis 10
2.3.3 Multiple inhibition assay 11
2.3.4 Inactivation mechanism 12
2.3.5 Thermostability assay 12
Chapter 3 - Results and discussion 13
3.1 Production of recombinant human USP2 and USP21 13
3.2 DUB activity of USP2 and USP21 14
3.3 Inhibitory effect of 6MP and MPA on USP21 14
3.4 The inhibition of USP2 and USP21 by disulfiram 15
3.5 6TG inhibits USP2 and USP21 through different binding sites 16
3.6 Disulfiram and 6TG can synergistically inhibit USP2 and USP21 17
3.7 Time-dependent inhibition of USP2 and USP21 by disulfiram 18
3.8 Disulfiram is a potential broad-spectrum inhibitor for USP family 19
3.9 Disulfiram targeting USPs as potential treatment on cancers 20
References 22
Figures 27
Tables 46
List of Figures
FIGURE 1. Production of recombinant USP2. 27
FIGURE 2. Production of recombinant USP21. 28
FIGURE 3. Production of recombinant USP21 co-expressed with chaperone 5. 29
FIGURE 4. The DUB activity of USP2 and USP21. 30
FIGURE 5. The structure of USP2 and USP21 inhibitors. 31
FIGURE 6. Inhibitory effect of disulfiram on USP2 and USP21. 32
FIGURE 7. Structure alignment of USP2 and USP21. 33
FIGURE 8. Production of recombinant USP21 C398S. 34
FIGURE 9. Inhibitory effect of disulfiram on USP21 C398S. 35
FIGURE 10. Inhibition of disulfiram on USP2. 36
FIGURE 11. Inhibition of disulfiram on USP21. 37
FIGURE 12. Inhibitory effect of 6TG on USP2 and USP21. 38
FIGURE 13. Inhibition of 6TG on USP21. 39
FIGURE 14. Synergistic effect of disulfiram and 6TG on USP2 and USP21. 40
FIGURE 15. Secondary structure change of USP2 and USP21. 41
FIGURE 16. The recoverability of DUB activity by βME. 42
FIGURE 17. Slow-binding inhibition of disulfiram on USP2 and USP21. 43
FIGURE 18. Time-dependent inactivation of USP2 and USP21 by disulfiram. 44
FIGURE 19. Time-dependent inactivation of USP21 by 6TG. 45
List of Tables
TABLE 1. IC50 comparison of disulfiram, 6TG, and combined inhibition on USP2 and USP21 46
TABLE 2. Kinetic parameters of disulfiram and 6TG inhibition of USP2 and USP21 47
References
1. Hershko, A. and A. Ciechanover, The ubiquitin system. Annu Rev Biochem, 1998. 67: p. 425-79.
2. Pickart, C.M. and M.J. Eddins, Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 2004. 1695(1-3): p. 55-72.
3. Reyes-Turcu, F.E., K.H. Ventii, and K.D. Wilkinson, Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem, 2009. 78: p. 363-97.
4. Komander, D., M.J. Clague, and S. Urbé, Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 2009. 10: p. 550.
5. Bhattacharya, S. and M.K. Ghosh, Cell death and deubiquitinases: perspectives in cancer. Biomed Res Int, 2014. 2014: p. 435197.
6. D'Arcy, P., X. Wang, and S. Linder, Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther, 2015. 147: p. 32-54.
7. Pfoh, R., I.K. Lacdao, and V. Saridakis, Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer, 2015. 22(1): p. T35-54.
8. Yuan, T., et al., Inhibition of Ubiquitin-Specific Proteases as a Novel Anticancer Therapeutic Strategy. Front Pharmacol, 2018. 9: p. 1080.
9. Davis, M.I., et al., Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models. J Biol Chem, 2016. 291(47): p. 24628-24640.
10. Chuang, S.J., et al., 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep, 2018. 8(1): p. 3102.
11. Issaenko, O.A. and A.Y. Amerik, Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle, 2012. 11(9): p. 1804-17.
12. Huang, X. and V.M. Dixit, Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res, 2016. 26(4): p. 484-98.
13. Faesen, A.C., M.P. Luna-Vargas, and T.K. Sixma, The role of UBL domains in ubiquitin-specific proteases. Biochem Soc Trans, 2012. 40(3): p. 539-45.
14. Ye, Y., et al., Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009. 5(12): p. 1797-808.
15. Leung, I., et al., Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21. Proc Natl Acad Sci U S A, 2016. 113(31): p. 8705-10.
16. Sacco, J.J., et al., Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life, 2010. 62(2): p. 140-57.
17. Xiao, Z., P. Zhang, and L. Ma, The role of deubiquitinases in breast cancer. Cancer Metastasis Rev, 2016. 35(4): p. 589-600.
18. Stevenson, L.F., et al., The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J, 2007. 26(4): p. 976-86.
19. Graner, E., et al., The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 2004. 5(3): p. 253-61.
20. Arceci, A., et al., FOXM1 Deubiquitination by USP21 Regulates Cell Cycle Progression and Paclitaxel Sensitivity in Basal-like Breast Cancer. Cell Rep, 2019. 26(11): p. 3076-3086 e6.
21. Li, W., et al., The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis, 2018. 9(5): p. 482.
22. Peng, L., et al., Ubiquitin specific protease 21 upregulation in breast cancer promotes cell tumorigenic capability and is associated with the NOD-like receptor signaling pathway. Oncol Lett, 2016. 12(6): p. 4531-4537.
23. Qu, Q., et al., USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol, 2015. 36(7): p. 5415-23.
24. He, J., et al., Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis, 2019. 10(4): p. 285.
25. Hu, M., et al., Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J, 2005. 24(21): p. 3747-56.
26. Renatus, M., et al., Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure, 2006. 14(8): p. 1293-302.
27. Wright, C. and R.D. Moore, Disulfiram treatment of alcoholism. Am J Med, 1990. 88(6): p. 647-55.
28. Loi, C.M., et al., Dose-dependent inhibition of theophylline metabolism by disulfiram in recovering alcoholics. Clin Pharmacol Ther, 1989. 45(5): p. 476-86.
29. Hasinoff, B.B. and D. Patel, Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Arch Biochem Biophys, 2017. 633: p. 23-28.
30. Loo, T.W., M.C. Bartlett, and D.M. Clarke, Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm, 2004. 1(6): p. 426-33.
31. Diaz-Sanchez, A.G., et al., Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans. Molecules, 2016. 21(12).
32. Paranjpe, A., et al., Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis, 2014. 35(3): p. 692-702.
33. Lin, M.H., et al., Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res, 2018. 150: p. 155-163.
34. Jiao, Y., B.N. Hannafon, and W.Q. Ding, Disulfiram's Anticancer Activity: Evidence and Mechanisms. Anticancer Agents Med Chem, 2016. 16(11): p. 1378-1384.
35. Skrott, Z., et al., Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017. 552(7684): p. 194-199.
36. Karran, P. and N. Attard, Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer, 2008. 8(1): p. 24-36.
37. Yonetani, T. and H. Theorell, Studies on Liver Alcohol Hydrogenase Complexes. 3. Multiple Inhibition Kinetics in the Presence of Two Competitive Inhibitors. Arch Biochem Biophys, 1964. 106: p. 243-51.
38. Copeland, R.A., Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, Second Edition. 2000: Wiley.
39. Cheng, K.W., et al., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res, 2015. 115: p. 9-16.
40. Galkin, A., et al., Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. J Biol Chem, 2014. 289(15): p. 10502-9.
41. Bruning, A. and R.E. Kast, Oxidizing to death: disulfiram for cancer cell killing. Cell Cycle, 2014. 13(10): p. 1513-4.
42. Papaioannou, M., et al., Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience, 2013. 1(1): p. 21-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top