跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳暉儒
研究生(外文):Hui-Ju Chen
論文名稱:雙–含氮雜環碳烯鈀錯合物應用於炔類的轉移氫化反應
論文名稱(外文):The Application of Bis-N-heterocyclic Carbene–Pd Catalytic System for the Transfer Hydrogenation Reaction of Alkynes
指導教授:李東昇李東昇引用關係
指導教授(外文):Dong-Sheng Lee
口試委員:陸大榮陳銘賜
口試委員(外文):Ta-Jung LuMing-Tsz Chen
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:231
中文關鍵詞:氫化反應含氮雜環碳烯
外文關鍵詞:hydrogenationcarbene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
通常氫化反應所使用的催化劑 (含氮雜環碳烯與金屬形成的錯合物),大部分為金屬釕、銠和銥,而較少使用鈀。其原因為經文獻證實含氮雜環碳烯與鈀形成的錯合物在進行還原脫去時,會使得錯合物失去活性,而無法進行氫化反應。
因為雙–含氮雜環碳烯銀錯合物31在空氣和水氣穩定不易失去活性,本研究利用銀錯合物31與醋酸鈀原位生成(in situ)雙–含氮雜環碳烯鈀錯合物,使其在有機溶劑或是水裡都能有效地進行催化反應,並且在反應過程中,不需惰性氣體保護,即可成功地進行轉移氫化反應。
在此催化系統中,氫源用了甲酸和三乙基胺反應產生的甲酸銨鹽來進行轉移氫化反應,而副產物為不需另外純化的二氧化碳,在60至80 oC,二甲基甲醯胺和水的混合溶劑,可有效地將炔基還原成對應的烯類或烷類,並得到良好的產率。
利用合成步驟容易操作、簡短的雙-含氮雜環碳烯鈀錯合物,可成功地在溫和條件下催化炔類化合物的轉移氫化反應,並可以在空氣下操作,不需繁瑣的前置作業與嚴苛的實驗環境。而在炔類內中含有不同官能基 (醇、醯胺、酯、烯烴、吡啶、硝基) 的受質也可以選擇性的還原炔類成相應的還原產物,並得到以較難製備的順式烯類為主,展現了高度立體 (>70%) 及化學選擇性 (>99%)。
Metal–NHC complexes such as ruthenium–, rhodium–, and iridium–NHC complexes used to perform catalytic hydrogenation had been widely studied. However, there have been less successful examples of Pd–NHC in hydrogenation catalysis. It has been observed that hydrido–palladium complexes of NHC may undergo reductive elimination leading to catalyst deactivation.
In this study, the bis-NHC–Pd complex derived from the bis-NHC–Ag complex 31 with Pd(OAc)2 in situ was examined. The bis-NHC–Ag complex is not easily deactivated in air and moist atmosphere and the transmetallation reaction can be carried out under organic solvent and/or water. The bis-NHC–Pd complex successfully performed transfer hydrogenation reaction without inert gas protection during the reaction.
Triethylammonium formate was employed as the hydrogen donor for the transfer hydrogenation. The by-product is carbon dioxide which requires no purification. In between 60 oC to 80 oC, the alkynes were effectively reduced to the corresponding alkene or alkane products in a mixed solvent of DMF and water with good yields.
Thus, an easily prepared bis-NHC–Pd complex has been developed, which can successfully catalyze the transfer hydrogenation of alkynes under mild conditions. The experiment could be operated under air without tedious protocol and harsh experimental conditions. The hydrogenation reaction performed well for a wide range of alkynes (alcohol, amide, ester, alkyl, pyridyl, nitro group) and afforded Z-olefins as the major products. It is compatible with a variety of functional groups, exhibits high stereo- (>70%) and chemoselectivity (>99%).
摘要…...................................................i
Abstract...............................................ii
List of Schemes........................................vi
List of Tables........................................vii
List of Figures......................................viii
List of Equations....................................viii

Chepter 1 Introduction 1
1.1 Preface 1
1.2 Transfer hydrogenation reaction 4
1.2.1 History 4
1.2.2 Transition metal catalyzed transfer hydrogenation 5
1.3 N-Heterocyclic carbenes (NHCs) 7
1.3.1 Synthesis of stable NHCs 7
1.3.2 Application of Metal–NHC to transfer hydrogenation 11
1.3.3 Metal–NHC complex: palladium 12
1.4 E- and Z-selective transfer hydrogenation of alkynes by catalyst 16
1.5 Research Motive 19
Chepter 2 Results and discussion 23
2.1 Synthesis of silver(I)-NHC complex 31 23
2.2 Optimization of the conditions of transfer hydrogenation reaction 25
2.3 Substrate scope of transfer hydrogenation catalyzed by 31/Pd system 36
2.4 Conclusion 51
Chepter 3 Experimental section 52
References 81
Chepter 4 Appendix 90
1.McCoy, M.; Reisch, M.; Tullo, A. H.; Short, P. L.; Tremblay, J.-F.; Storck, W. J., Chem. Eng. News 2006, 84, 59–68.

2.Sattler, J. J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M., Chem. Rev. 2014, 114, 10613–10653.

3.Maryanoff, B. E.; Reitz, A. B., Chem. Rev. 1989, 89, 863–927.

4.Wadsworth, W. S.; Emmons, W. D., J. Am. Chem. Soc. 1961, 83, 1733–1738.

5.Boutagy, J.; Thomas, R., Chem. Rev. 1974, 74, 87–99.

6.Wittig, G.; Schöllkopf, U., Chem. Ber. 1954, 87, 1318–1330.

7.Blakemore, P. R., J. Chem. Soc., Perkin Trans. 1 2002, 2563–2585.

8.Julia, M.; Paris, J. M., Tetrahedron Lett. 1973, 14, 4833–4836.

9.Chan., T.-H., Acc. Chem. Res. 1977, 10, 442–448.

10.Peterson, D. J., J. Org. Chem. 1968, 33, 780–784.

11.Staden, L. F. v.; Gravestock, D.; Ager, D. J., Chem. Soc. Rev. 2002, 31, 195–200.

12.Vougioukalakis, G. C.; Grubbs, R. H., Chem. Rev. 2010, 110, 1746–1787.

13.Johnstone, R. A. W.; Wilby, A. H.; Entwistle, I. D., Chem. Rev. 1985, 85, 129–170.

14.Zassinovich, G.; Mestroni, G.; Gladiali, S., Chem. Rev. 1992, 92, 1051–1069.

15.Knoevenagei, E.; Bergdolt, B., Chem. Ber. 1903, 36, 2857–2860.

16.Wieland, H., Chem. Ber. 1912, 45, 3157–3166.

17.Paviov, G. S.; Zelinski, N. D., Chem. Ber. 1933, 66, 1420.

18.Corson, B.; Ipatieff, V. N., J. Am. Chem. Soc. 1939, 61, 1056–1057.

19.Braude, E. A.; Jackman, L. M.; Mitchell, P. W. D.; Wooldridge, K. R. H.; Linstead, R. P., Nature (London). 1952, 169, 100–103.

20.Castellanos-Blanco, N.; Arevalo, A.; Garcia, J. J., Dalton Trans. 2016, 45, 13604–13614.

21.Panagiotopoulou, P.; Martin, N.; Vlachos, D. G., J. Mol. Catal. Chem. 2014, 392, 223–228.

22.Lu, Y.-M.; Zhu, H.-Z.; Li, W.-G.; Hu, B.; Yu, S.-H., J. Mater. Chem. A. 2013, 1, 3783–3788.

23.Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N., ACS. Catal. 2014, 4, 3504–3511.

24.Verho, O.; Nagendiran, A.; Johnston, E. V.; Tai, C.-W.; Bäckvall, J.-E., ChemCatChem. 2013, 5, 612–618.

25.Hauwert, P.; Boerleider, R.; Warsink, S.; Weigand, J. J.; Elsevier, C. J., J. Am. Chem. Soc. 2010, 132, 16900–16910.

26.King, S. M.; Ma, X.; Herzon, S. B., J. Am. Chem. Soc. 2014, 136, 6884–6887.

27.Hauwert, P.; Maestri, G.; Sprengers, J. W.; Catellani, M.; Elsevier, C. J., Angew. Chem. Int. Ed. 2008, 47, 3223–3226.

28.Alonso, F.; Yus, M., Chem. Soc. Rev. 2004, 33, 284–293.

29.Reyes-Sánchez, A.; Cañavera-Buelvas, F.; Barrios-Francisco, R.; Cifuentes-Vaca, O. L.; Flores-Alamo, M.; García, J. J., Organometallics 2011, 30, 3340–3345.

30.Choudary, B. M.; Vasanth, G.; M.Sharma; Bharathi, P., Angew. Chem. Int. Ed. Engl. 1989, 28, 465–466.

31.Tani, K.; Ono, N.; Okamoto, S.; Sato, F., J. Chem. Soc., Chem. Commun. 1993, 386–387.

32.Schrock, R. R.; Osborn, J. A., J. Am. Chem. Soc. 1976, 98, 2134–2143.

33.Haberberger, M.; Irran, E.; Enthaler, S., Eur. J. Inorg. Chem. 2011, 2011, 2797–2802.

34.Pierre, H. S. L.; Arnold, J.; Toste, F. D., Angew. Chem. Int. Ed. 2011, 50, 3900–3903.

35.Karunananda, M. K.; Mankad, N. P., J. Am. Chem. Soc. 2015, 137, 14598–14601.

36.Radkowski, K.; Sundararaju, B.; Furstner, A., Angew. Chem. Int. Ed. 2013, 52, 355–360.

37.Wang, G.-H.; Bin, H.-Y.; Sun, M.; Chen, S.-W.; Liu, J.-H.; Zhong, C.-M., Tetrahedron 2014, 70, 2175–2179.

38.Fu, S.; Chen, N. Y.; Liu, X.; Shao, Z.; Luo, S. P.; Liu, Q., J. Am. Chem. Soc. 2016, 138, 8588–8594.

39.Wang, D.; Astruc, D., Chem. Rev. 2015, 115, 6621–6686.

40.Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G., Chem. Rev. 2000, 100, 39–92.

41.de Frémont, P.; Marion, N.; Nolan, S. P., Coord. Chem. Rev. 2009, 253, 862–892.

42.Herrmann, W. A.; Köcher, C., Angen. Chem. Int. Ed. Engl. 1997, 36, 2162–2187.

43.Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F., Nature 2014, 510, 485–496.

44.Arduengo, A. J.; Harlow, R. L.; Kline, M., J. Am. Chem. Soc. 1991, 113, 361–363.

45.Arduengo, A. J.; Krafczyk, R., Chem. Unserer. Zeit. 1998, 32, 6–14.

46.Hitchcock, P. B.; Lappert, M. F.; Pye, P. L., J. Chem. Soc., Dalton Trans. 1977, 2160–2172.

47.Staudinger, H.; Kupfer, O., Eur. J. Inorg. Chem. 1912, 45, 501–509.

48.Rafinski, Z.; Kozakiewicz, A., J. Org. Chem. 2015, 80, 7468–7476.

49.Phillips, E. M.; Chan, A.; Scheidt, K. A., Aldrichimica Acta 2009, 42, 55–66.

50.Kantchev, E. A.; O'Brien, C. J.; Organ, M. G., Angew. Chem. Int. Ed. 2007, 46, 2768–2813.

51.Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T., Chem. Rev. 2015, 115, 9307–9387.

52.Campbell, C. D.; Concellón, C.; Smith, A. D., Tetrahedron: Asymmetry 2011, 22, 797–811.

53.Germain, N.; Magrez, M.; Kehrli, S.; Mauduit, M.; Alexakis, A., Eur. J. Org. Chem. 2012, 2012, 5301–5306.

54.Rafiński, Z.; Kozakiewicz, A.; Rafińska, K., ACS. Catal. 2014, 4, 1404–1408.

55.Zeng, F.; Yu, Z., Organometallics 2008, 27, 6025–6028.

56.Gnanamgari, D.; Moores, A.; Rajaseelan, E.; Crabtree, R. H., Organometallics. 2007, 26, 1226–1230.

57.McGuinness, D. S.; Green, M. J.; Cavell, K. J.; Skelton, B. W.; White, A. H., J. Organomet. Chem. 1998, 565, 165–178.

58.McGuinness, D. S.; Cavell, K. J.; Skelton, B. W.; White, A. H., Organometallics 1999, 18, 1596–1605.

59.Ozawa, F.; Fujimori, M.; Yamamoto, T.; Yamamoto, A., Organometallics 1986, 5, 2144–2149.

60.Arnold, P. L.; Cloke, F. G. N.; Geldbach, T.; Hitchcock, P. B., Organometallics 1999, 18, 3228–3233.

61.Clement, N. D.; Cavell, K. J.; Jones, C.; Elsevier, C. J., Angew. Chem. Int. Ed. 2005, 44, 2026–2029.

62.Jurcik, V.; Nolan, S. P.; Cazin, C. S., Chem. Eur. J. 2009, 15, 2509–2511.

63.Molnár, Á.; Sárkány, A.; Varga, M., J. Mol. Catal. A Chem. 2001, 173, 185–221.

64.Drost, R. M.; Bouwens, T.; van Leest, N. P.; de Bruin, B.; Elsevier, C. J., ACS. Catal. 2014, 4, 1349–1357.

65.Dub, P. A.; Gordon, J. C., ACS. Catal. 2017, 7, 6635–6655.

66.Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q., Angew. Chem. Int. Ed. 2009, 48, 5094–5115.

67.Martin, R.; Buchwald, S. L., Acc. Chem. Res. 2008, 41, 1461–1473.

68.Beletskaya, I. P.; Cheprakov, A. V., Chem. Rev. 2000, 100, 3009–3066.

69.Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.; Felpin, F.-X., Adv. Synth. Catal. 2010, 352, 33–79.

70.Milne, J. E.; Buchwald, S. L., J. Am. Chem. Soc. 2004, 126, 13028–13032.

71.Suzaki., Y.; Osakada., K., Organometallics 2006, 25, 3251–3258.

72.Amatore, C.; Jutand, A.; Le Duc, G., Chem. Eur. J. 2011, 17, 2492–2503.

73.Sun, C.; Potter, B.; Morken, J. P., J. Am. Chem. Soc. 2014, 136, 6534–6537.

74.Frost, C. G.; Howarth, J.; J.M.J.Williams, Tetrahedron: Asymmetry 1992, 3, 1089–1122.

75.Tromp, M.; Sietsma, J. R. A.; van Bokhoven, J. A.; van Strijdonck, G. P. F.; van Haaren, R. J.; van der Eerden, A. M. J.; van Leeuwen, P. W. N. M.; Koningsberger, D. C., Chem. Commum. 2003, 128–129.

76.Steinhoff, B. A.; Stahl, S. S., Org. Lett. 2002, 4, 4179–4181.

77.Chan, A.; Scheidt, K. A., J. Am. Chem. Soc. 2007, 129, 5334–5335.

78.Bonnet, L. G.; Douthwaite, R. E., Organometallics 2003, 22, 4187–4189.

79.Soeta, T.; Hatanaka, Y.; Ishizaka, T.; Ukaji, Y., Tetrahedron 2018, 74, 4601–4605.

80.Chiu, C.-C.; Chiu, H.-T.; Lee, D.-S.; Lu, T.-J., RSC. Adv. 2018, 8, 26407–26415.

81.Lin, Y.-R.; Chiu, C.-C.; Chiu, H.-T.; Lee, D.-S.; Lu, T.-J., Appl. Organomet. Chem. 2018, 32, e3896.

82.Li, D.-H.; He, X.-X.; Xu, C.; Huang, F.-D.; Liu, N.; Shen, D.-S.; Liu, F.-S., Organometallics 2019, 38, 2539–2552.

83.邱建誠, 開發新型雙–含氮雜環碳烯前驅物及其在催化反應上之應用, 博士論文, 台中:中興大學 化學研究所. 2018.

84.游雅涵, 新型雙–含氮雜環碳烯與醋酸鈀所形成之錯合物在催化反應上之應用:醛酮類的轉移氫化反應, 碩士論文, 台中:中興大學 化學研究所. 2018.

85.Padmanaban, S.; Gunasekar, G. H.; Lee, M.; Yoon, S., ACS Sustain. Chem. Eng. 2019, 7, 8893–8899.

86.Shaughnessy, K. H., Metal-Catalyzed Reactions in Water, Wiley, Weinheim, 2013; pp 1-46.

87.Organic Chemistry Info.https://www.chem.wisc.edu/areas/organic/index-chem.htm.

88.Grossman, R. B., J. Chem. Educ. 2003, 80, 1259–1260.

89.Luo, X.; Yuan, J.; Yue, C. D.; Zhang, Z. Y.; Chen, J.; Yu, G. A.; Che, C. M., Org. Lett. 2018, 20, 1810–1814.

90.Trost, B. M.; Braslau, R., Tetrahedron Lett. 1989, 30, 4657–4660.

91.Okamoto, S.; Naoya Ono, K. T.; Yoshida, Y.; Sato, F., J. Chem. Soc., Chem. Commun. 1994, 279–280.

92.Enthaler, S.; Haberberger, M.; Irran, E., Chem. Asian J. 2011, 6, 1613–1623.

93.Iwasaki, R.; Tanaka, E.; Ichihashi, T.; Idemoto, Y.; Endo, K., J. Org. Chem. 2018, 83, 13574–13579.

94.Zhang, Z.-H.; Li, T.-S.; Li, J.-J., Monatsh. Chem. 2006, 138, 89–94.

95.Yang, X.; Xing, H.; Zhang, Y.; Lai, Y.; Zhang, Y.; Jiang, Y.; Ma, D., Chin. J. Chem. 2012, 30, 875–880.

96.Demir, S.; Özdemir, I.; Çetinkaya, B., Appl. Organomet. Chem. 2006, 20, 254–259.

97.Seva, L.; Hwang, W.-S.; Sabiah, S., J. Mol. Catal. A: Chem. 2016, 418-419, 125–131.

98.Nilov, D. I.; Vasilyev, A. V., Tetrahedron Lett. 2015, 56, 5714–5717.

99.Moulton, B. E.; Whitwood, A. C.; Duhme-Klair, A. K.; Lynam, J. M.; Fairlamb, I. J., J. Org. Chem. 2011, 76, 5320–5334.

100. Chen, W.; Tao, H.; Huang, W.; Wang, G.; Li, S.; Cheng, X.; Li, G., Chem. Eur. J. 2016, 22, 9546–9550.

101. Radivoy, G.; Buxaderas, E.; Volpe, M., Synthesis 2018, 51, 1466–1472.

102. Liu, S.; Chen, X.; Hu, Y.; Yuan, L.; Chen, S.; Wu, P.; Wang, W.; Zhang, S.; Zhang, W., Adv. Synth. Catal. 2015, 357, 553–560.

103. Molloy, J. J.; Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy, A. R.; Nelson, D. J.; Watson, A. J. B., J. Am. Chem. Soc. 2018, 140, 126–130.

104. Bao, H.; Zhou, B.; Jin, H.; Liu, Y., J. Org. Chem. 2019, 84, 3579–3589.

105. Zhao, S.; Mankad, N. P., Angew. Chem. Int. Ed. 2018, 57, 5867–5870.

106. Tomita, R.; Mantani, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M., Chem. Eur. J. 2014, 20, 9914–9917.

107. Shen, R.; Chen, T.; Zhao, Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang, X.; Goto, M.; Han, L. B., J. Am. Chem. Soc. 2011, 133, 17037–17044.

108. Tarigopula, C.; Thota, G. K.; Balamurugan, R., Eur. J. Org. Chem. 2016, 2016, 5855–5861.

109. Ren, K.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, Z., J. Org. Chem. 2014, 79, 2170–2177.

110. Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y., Adv. Synth. Catal. 2012, 354, 1542–1550.

111. Hauptmann, R.; Petrosyan, A.; Fennel, F.; Arguello Cordero, M. A.; Surkus, A. E.; Pospech, J., Chem. Eur. J. 2019, 25, 4325–4329.

112. Bartal, B.; Mikle, G.; Kollár, L.; Pongrácz, P., Mol. Catal. 2019, 467, 143–149.

113. Zhao, C. Q.; Chen, Y. G.; Qiu, H.; Wei, L.; Fang, P.; Mei, T. S., Org. Lett. 2019, 21, 1412–1416.

114. Mao, D.; Hong, G.; Wu, S.; Liu, X.; Yu, J.; Wang, L., Eur. J. Org. Chem. 2014, 2014, 3009–3019.

115. Ratheesh Kumar, V. K.; Gopidas, K. R., Tetrahedron Lett. 2011, 52, 3102–3105.

116. Espinal-Viguri, M.; Neale, S. E.; Coles, N. T.; Macgregor, S. A.; Webster, R. L., J. Am. Chem. Soc. 2019, 141, 572–582.

117. Baader, S.; Podsiadly, P. E.; Cole-Hamilton, D. J.; Goossen, L. J., Green Chem. 2014, 16, 4885–4890.

118. Zhou, M.; Li, T.; Xu, B., Tetrahedron Lett. 2019, 60, 948–952.

119. Wang, Y.; Huang, Z.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z., J. Am. Chem. Soc. 2018, 140, 4417–4429.

120. Lamani, M.; Guralamata, R. S.; Prabhu, K. R., Chem. Commun. 2012, 48, 6583–6585.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. Part I新型雙-含氮雜環碳烯與醋酸鈀所形成之錯合物在催化反應上之應用:醛酮類的轉移氫化反應 Part II新型雙-含氮雜環碳烯與醋酸鈀所形成之錯合物在催化反應上之應用:醛類的氧化反應
2. 利用鈀催化分子內脫氫耦合反應合成具吲哚與苯并咪唑結構衍生物
3. 鈀催化分子內脫氫偶合反應之探討–雙苯并咪唑結構化合物之合成及其應用在不對稱催化反應
4. 以樟腦為架構之 N-胺基環狀胺基甲酸脂腙掌性配體的開發與其應用於二乙基鋅對醛類之不對稱加成
5. 新型掌性苯并咪唑鹽的開發與應用:不對稱鈀催化鈴木-宮浦偶合反應
6. 新型含吲哚骨架之含氮雜環碳烯之開發與應用:鈀催化之鈴木-宮浦交叉偶合反應
7. 新型雙–含氮雜環碳烯與醋酸鈀形成之催化系統催化芳香基氯化物與芳香基硼酸之偶合反應
8. 雙苯并咪唑鹽類之開發:合成與應用於鈀催化高立體障礙芳香氯化物之鈴木-宮浦偶合反應
9. 開發新型雙-含氮雜環碳烯前驅物及其在催化反應上之應用
10. 著床時小鼠子宮內膜上皮細胞中miRNA-24-3p對GRIM-19之調控
11. Pectobacterium carotovorum subsp. carotovorum ABC 轉運蛋白影響細菌素 carocin S2 基因表現之研究
12. Pectobacterium carotovorum subsp. carotovorum之低分子量細菌素與Cyclic-AMP Receptor Protein(CRP)基因之調控機制研究
13. 新穎含胺基雙苯並噻唑酚基及硝基苯酚基之釔金屬錯合物合成、結構鑑定與應用於開環聚合催化之研究
14. Pectobacterium carotovorum subsp. carotovorum 中Diguanylate環化酶對低分子量細菌素carocin S2 Gene之調控機制研究
15. 應用非洲爪蟾卵萃取物以及條件培養液產製小鼠類始基生殖細胞