|
Liang Zhaoa,1, Arjun Setha,1, Nani Wibowoa, Chun-Xia Zhaoa, Neena Mitterb, Chengzhong Yua, Anton P.J. Middelberga, Nanoparticle vaccines, Vaccine, 2014, 3, 27~337.
Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad, Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy, Chem. Rev., 2016, 116, 2826~2885.
Simona Mura, Julien Nicolas and Patrick Couvreur, Stimuli-responsive nanocarriers for drug delivery, NATURE MATERIALS, 2013, Vol. 12, 991~1003.
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 2012, 112, 2373-2433.
Erem Bilensoy, Can Sarisozen, Günes¸ Esendaglı, A. Lale Dogan, Yesim Aktas, Murat Sen, N. Aydın Mungan, Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors, International Journal of Pharmaceutics, 2009, 170–176.
Ying Zhang, Ren-xi Zhuo, Synthesis and in vitro drug release behavior of amphiphilictriblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone, Biomaterials, 2005, 6736–6742.
MATTEO CONTI, VALERIA TAZZARI, CESARE BACCINI, GIANNI PERTICI, LORENZO PIO SERINO AND UGO DE GIORGI, Anticancer Drug Delivery with Nanoparticles, in vivo, 2006, 20, 697-702.
Sarwar Hossen, M. Khalid Hossain, M.K. Basher, M.N.H. Mia, M.T. Rahman, M. Jalal Uddin. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review, Journal of Advanced Research, 2018. Arsalan Ahmed, Sen Liu, Yutong Pan, Shanmei Yuan, Jian He, and Yong Hu, Multicomponent Polymeric Nanoparticles Enhancing Intracellular Drug Release in Cancer Cells, ACS Appl. Mater. Interfaces, 2014, 6, 21316~21324.
Muhammad Sajid Hamid Akash, Kanwal Rehman & Shuqing Chen, Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins, Polymer Reviews, 2015, 55:3, 371~406.
Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012;6:227–33.
Han-Min Kim, Hak-Ryul Kim, Ching T. Hou, Beom Soo Kim, Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxy Fatty Acids, J Am Oil Chem Soc, 2010, 87:1451–1459.
Klaus Strebhardt and Axel Ullrich, Paul Ehrlich’s magic bullet concept: 100 years of progress, Nature Rev. Cancer, 2008, 8, 473~480
Jorg Kreuter, Nanoparticles—a historical perspective, International Journal of Pharmaceutics, 2007, 331, 1~10.
Gurny, R., Peppas, N.A., Harrington, D.D., Banker, G.S., Development of biodegradable and injectable lattices for controlled release of potent drugs., Drug Dev. Ind. Pharm., 1981, 7, 1–25.
Birrenbach, G., Speiser, P.P., Polymerized micelles and their use as adjuvants in immunology., J. Pharm. Sci., 1976, 65, 1763–1766.
Khanna, S.C., Jecklin, T., Speiser, P., Bead polymerisation technique for sustained release dosage form., J. Pharm. Sci., 1970, 59, 614–618.
Perrault, S. D.; Chan, W. C. W., Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50−200 nm, J. Am. Chem. Soc., 2009, 131 (47), 17042~17043.
Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15 (10), 1957~1962.
Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293 (5533), 1289~1292.
Altintas, O.; Vogt, A. P.; Barner-Kowollik, C.; Tunca, U., Constructing Star Polymers via Modular Ligation Strategies. Polym. Chem., 2012, 3, 34−45.
Prasad, P. N. Nanophotonics; Wiley-Interscience: Hoboken, NJ, 2004.
Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105 (4), 1025−1102.
Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-Challenge and Perspectives., Angew. Chem., Int. Ed. 2009, 48 (5), 872−897.
Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science, 2004, 303 (5665), 1818−1822.
Muller, R. H.; Mader, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50 (1), 161−177.
Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery., Chem. Soc. Rev., 2013, 42 (3), 1147−1235.
McCarthy, J. R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Delivery Rev. 2008, 60 (11), 1241−1251.
Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad, Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy, Chem. Rev., 2016, 116, 2826~2885. [2]
João Conniot, Joana M. Silva, Joana G. Fernandes, Liana C. Silva, Rogério Gaspar, Steve Brocchini, Helena F. Florindo and Teresa S. Barata., Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking., Frontiers in Chemistry, 2014, Vol. 2, Article 105., 1~27
Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M., Polymeric systems for controlled drug release., Chem. Rev., 1999, 99 (11), 3181~3198.
Yasuhiro Matsumura and Hiroshi Maeda, A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs, cancer research, 1986, 46, 6387~6392
Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad, Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy, Chem. Rev., 2016, 116, 2826~2885.
Saina Yang, Feiyan Zhu, Qian Wang, Fuxin Liang, Xiaozhong Qu, Zhihua Gan and Zhenzhong Yang, Combinatorial targeting polymeric micelles for anti-tumor drug delivery, Journal of Materials Chemistry B, 2015, 3(19), 4043–4051.
Ruth Duncan, The dawning era of polymer therapeutics, Nature Reviews Drug discovery, 2003, Vol. 2., 347~360
LEIBLER, Ludwik; ORLAND, Henri; WHEELER, John C. Theory of critical micelle concentration for solutions of block copolymers. The Journal of chemical physics, 1983, 79(7), 3550~3557.
Ling Mei, Yayuan Liu, HuaJin Zhang, Zhirong Zhang, Huile Gao, and Qin He, Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug, ACS Appl. Mater. Interfaces, 2016, 8, 9577~9589
SINGH, Jasvinder, et al. Diphtheria toxoid loaded poly-(ε-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods, 2006, 38.2: 96-105.
FLORINDO, H. F., et al. New approach on the development of a mucosal vaccine against strangles: systemic and mucosal immune responses in a mouse model. Vaccine, 2009, 27.8: 1230-1241.
FLORINDO, H. F., et al. The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-ɛ-caprolactone-based nanoparticles. Biomaterials, 2009, 30.5: 879-891.
EMOTO, Kazunori; NAGASAKI, Yukio; KATAOKA, Kazunori. A Core− Shell Structured Hydrogel Thin Layer on Surfaces by Lamination of a Poly (ethylene glycol)-b-poly (d, l-lactide) Micelle and Polyallylamine. Langmuir, 2000, 16.13: 5738-5742.
RÖSLER, Annette; VANDERMEULEN, Guido WM; KLOK, Harm-Anton. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced drug delivery reviews, 2012, 64: 270-279.
Stephanie Tran1, Peter Joseph DeGiovanni1, Brandon Piel and Prakash Rai. Cancer nanomedicine: a review of recent success in drug delivery, Clin Trans Med, 2017 6:44.
Rizvi, S.A.A., Saleh, A.M., Applications of Nanoparticle Systems in Drug Delivery Technology, Saudi Pharmaceutical Journal, 2017
Ying-Jie Zhu and Feng, pH-Responsive Drug-Delivery, Chemistry - An Asian Journal,2014 , 284–305.
Elizabeth R. Gillies and Jean M. J. Fre´chet, pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin, Bioconjugate Chem, 2005, 16, 361−368. Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012;6:227–33.
Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012;6:227–33.
S. Ponsart, J. Coudane, and M. Vert, A Novel Route to Poly(E-caprolactone)-Based Copolymers via Anionic Derivatization, Biomacromolecules, 2000, 1, 275~281
A.G.A. Coombes, S.C. Rizzi, M. Williamson, J.E. Barralet, S. Downes, W.A. Wallace, Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery, Biomaterials, 2004, 25, 315~325.
Julien Nicolas, Simona Mura, Davide Brambilla, Nicolas Mackiewicz and Patrick Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev., 2013, 42, 1147
Fatemeh Bahadori, Aydan Dag, Hakan Durmaz, Nese Cakir, Hayat Onyuksel, Umit Tunca, Gulacti Topcu and Gurkan Hizal, Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine, Polymers, 2014, 6, 214~242.
Jorg Kreuter, Nanoparticles—a historical perspective, International Journal of Pharmaceutics, 2007, 331, 1~10.
Robert M. Fitch, Michael B. Prenosil, Karen J. Sprick, The mechanism of particle formation in polymer hydrosols. I. Kinetics of Aqueous Polymerization of Methyl Methacrylate, Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library, 1969, pp.95-118.
William D. Harkins, A General Theory of the Mechanism of Emulsion Polymerization, Journal of the American Chemical Society, 1947, 1428-1444.
H. Fessi, F. Puisieux, J.Ph. Devissaguet, N. Ammoury and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, International Journal of Pharmaceutics, 1989,55 R1-R4.
Miladi K., Sfar S., Fessi H., Elaissari A. Nanoprecipitation Process: From Particle Preparation to In Vivo Applications. In: Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development (Vauthier C., Ponchel G. ed.). Springer International Publishing. 2016; pp 17–53.
Jong Min Sung. Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation. 2007.
|