跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李成祥
研究生(外文):Chen-Shiang Lee
論文名稱:Palladium(II),Copper(I),Ruthenium(II)andPlatinum(II)N-HeterocyclicCarbeneComplexes
論文名稱(外文):Palladium (II), Copper (I), Ruthenium (II) and Platinum (II) N-Heterocyclic Carbene Complexes
指導教授:黃文樞黃文樞引用關係
指導教授(外文):Wen-Shu Hwang
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:200
外文關鍵詞:N-heterocyclic carbeneCuPdRuPt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
This dissertation discusses the synthesis, structural characterizations, related
properties and further applications of N-heterocyclic carbene (NHC) complexes of
palladium (II), copper (I), ruthenium (II) and platinum (II).
In Chapter 1, the basic principles of N-heterocyclic carbene ligand and the
related background of their metal complexes are conceptually described. The
properties of metal complexes bearing chelate- or pincer-type NHC ligand are
introduced. The main ideas of each chapter in this dissertation are illustrated.
In Chapter 2, the homoleptic bis-chelate tetracarbene palladium(II) complex ,
[(BuCCmeth)2Pd][BF4]2, have been synthesized through Ag2O method and
characterized spectroscopically. Single crystal structure of resulting complex has been
studied. The dicarbene ligand is proposed to enhance the basic property on the Pd
center, and increase the stability of the active Pd species by chelating effect.
[(BuCCmeth)2Pd][BF4]2 shows excellent air and thermal stability at high temperature
and also exhibits good catalytic activity with full recyclability in DMF towards Heck
reaction. The dicarbene ligand is further modified by attaching pyridinum moiety on
the side arms of the NHC rings. The Pd(II) complexes of the pyridinum-tagged NHC
ligand, [(PyBuCCmeth)2Pd][PF6]6 and [(PyBuCCmeth)PdCl]2[PF6]6, are also applied and
compared with other type of Pd(II)-NHCs in Heck reaction under identical reaction
condition. Heck reaction in pure aqua phase using bis-chelate Pd(II)-NHCs is
performed as well.
In Chapter 3, the methylenebis(N-alkylimidazolium) chloride, [alkylCCMe-H]Cl2
(alkyl = methyl or n-butyl group), are converted to dialkyl-biimidazoles by cuprous
oxide with concurrent C-N bond cleavage and C-C bond formation. This unusual C-N
bond cleavage is proposed to involve a Cu(I)-NHC complex. The reaction is unique as
it involves C-N bond cleavage and C-C bond formation.
In Chapter 4, reaction of [RCPC-H]Cl2, where the RCPC is
2,6-bis(methylimidazol-2-ylidene)-pyrazine (R = me) or
2,6-bis(butylimidazol-2-ylidene)-pyrazine (R = Bu), with RuCl3 under high
temperature generated the [(RCPC)2Ru]Cl2 complexes. The anion-exchanged
products, [(RCPC)2Ru][PF6]2 were obtained by the reaction of NH4PF6 with
[(RCPC)2Ru]Cl2 in aqueous solution. The structural analyses of [(BuCPC)2Ru]Cl2,
[(meCPC)2Ru][PF6]2 and [(BuCPC)2Ru][PF6]2 showed that all three complexes are in
six-coordinated geometry with two tridentated ligands and one metal center, , and are
analogous to Ru(II)(terpy)2 system. Their absorption and emission spectra showed
dramatic variation upon addition of the acid, indicating a possible application on acid
detection. Introducing a methyl group on the nitrogen atom of the pyrazine of
[(BuCPC)2Ru][PF6]2 led to a similar UV-vis spectrum pattern to that of the protonated
[(BuCPC)2Ru][PF6]2.
In Chapter 5, a novel class of Pt(II) complexes with pyridine-based pincer-type
NHC ligand, denoted as RCNC, where R = Bu or Mestyl ring, was synthesized. The R
groups on the pincer ligand were found to be responsible for the formation of dimmer,
as evidenced by the single crystal X-ray analysis of the reported complexes. All
Pt(II)-NHCs in this work are emissive in solution at room temperature, which are
attributed to the incorporation of NHC moieties with strong σ-donating nature. The
dimeric Pt(II)-NHCs shows aquachromic photoluminescence in the solid state upon
hydration and dehydration.
Contents………………………………………………………………………………..i
List of schemes……………………………………………………………………….iv
List of figures…………………………………………………………………………vi
List of tables…………………………………………………………………………..xi
Chapter 1. Introduction: Palladium (II), Copper (I), Ruthenium (II) and Platinum
(II) N-Heterocyclic Carbene Complexes……………………………………………..1
Chapter 2. Synthesis, Structural Characterization and Catalytic Activities of
Bis-chelate tetracarbene Palladium(II) complexes......................................................6
2.1 Introduction……………………………………………………………………............6
2.2 Synthesis of Bis-chelate tetracarbene Palladium (II) complexes…………………..11
2.2.1 Preparation of [(BuCCmeth)2Pd][BF4]2.................................................................................11
2.2.2 Preparation of [(PyBuCCmeth)2Pd][PF6]6 and [(PyBuCCmeth)PdCl]2[PF6]6………………...12
2.2.3 Synthesis of the Pd(II) complexes, [(PyBuCCmeth)2Pd][PF6]6 and
[(PyBuCCmeth)PdCl]2[PF6]6, derived from the pyridinium-tagged bis-imidazolium salts
…………………………………………………………………………………...13
2.2.4 Molecular structures of [(BuCCmeth)2Pd][BF4]2, [(PyBuCCmeth)Ag]2[PF6]6,
[(PyBuCCmeth)PdCl]2[PF6]6 and [(Br BuCCmeth)2Pd][PF6]2……………………………………….16
2.3 Catalytic properties of Pd(II)-NHCs towards Heck reaction……………………...23
2.3.1 Use of [(BuCCmeth)2Pd][BF4]2 as catalyst………………………………………………….23
2.3.2 Comparative activities of different N-Heterocyclic Carbene Palladium Catalysts
toward Heck reaction…………………………………………………………………………...32
2.3.3 Heck reaction with [AcetalCAcetalPdCl2]2, [(PyCAcetal)2Pd]Br2, [(PyBuCCmeth)2Pd][PF6]6 and
[(PyBuCCmeth)PdCl]2[PF6]6 as catalyst in pure aqua solution.....................................................40
2.4 Conclusion:……………………………………………………………………………48
2.5 Experimental section:………………………………………………………………...50
References:…………………………………………………………………………..........55
i
Chapter 3. Synthesis, Characterization of Bis-N-heterocyclic Carbene Complexes of
Cu(I). Facile C-N Bond Cleavage Promoted by Cuprous Oxide: Formation of C-C -
Coupled Biimidazole from Its Methylene-Bridged Congener………………………58
3.1 Introduction…………………………………………………………………………..58
3.2 Synthesis of dimeric Cu-NHC complex and investigation of C-C Coupled
Biimidazole:……………………………………………………………………………….61
3.2.1 Reactions of bis-imidazolium salts and Cu2O…………………………………………...61
3.2.2 Factors that affect the C-N cleavage/ C-C formation…………………………………..63
3.2.3 molecular structure of [(Me2biim)Cu]2Cl4, [(MeCCMe)Cu]2[PF6]2, and
[(Bu2biim)Cu]2Cl4.........................................................................................................................68
3.2.4 Photophysic measurement of [(Me2biim)Cu]2Cl4……………………………………….71
3.3 Conclusions…………………………………………………………………………...71
3.4 Experimental section:………………………………………………………………...73
Reference:…………………………………………………………………………………76
Appendix 3.1:……………………………………………………………………………..79
Chapter 4. Synthesis, structural characterization and proton dependent
photophysical properties of ruthenium(II) complex with pyrazinyl N-heterocyclic
carbenes ligand………………………………………………………………………83
4.1 Introduction…………………………………………………………………………..83
4.2 Synthesis of Ru(II) complexes containing pincer-type Pyrazinyl N-Heterocyclic
Carbenes Ligands………………………………………………………………………...88
4.2.1 Preparation of [(RCPC)2Ru][X]2…………………………………………………………88
4.2.2 Methylation of [(BuCPC)2Ru][PF6]2………………………………………………………89
4.2.3 Molecular structures of Ru(II) complexes containing pincer-type pyrazinyl
N-heterocyclic carbenes Ligands:……………………………………………………………...93
4.2.4 Electronic absorption spectrum of [(meCPC)2Ru]Cl2, [(BuCPC)2Ru]Cl2
[(meCPC)2Ru][PF6]2 and [(BuCPC)2Ru][PF6]2:…………………………………………………97
4.2.5 Acid titration of [(meCPC)2Ru][PF6]2 and [(BuCPC)2Ru][PF6]2:………………………100
4.3 Conclusion:………………………………………………………………………......110
4.4 Experimental section:…………………………………………………………….....111
Reference:………………………………………………………………………………..116
ii
Chapter 5. Syntheses, Crystal structures of Luminescent Platinum(II) complexes
containing Pincer-type N-heterocyclic Carbene ligand…………………………...118
5.1 Introduction………………………………………………………………………….118
5.2 Results and discussions:…………………………………………………………….125
5.2.1 Monomeric Pt(II) complex with pincer-type NHC ligand:……………………………125
5.2.2 Dimeric Pt(II) complex with pincer-type NHC ligand:……………………………….142
5.2.3 Photophysics measurement of Pt(II) complexes with pincer-type NHC ligand:…….150
5.3 Conclusions………………………………………………………………………….164
5.4 Experimental section:…………………………………………………………….....165
Reference:………………………………………………………………………………..170
Appendix 5.1:……………………………………………………………………………174
Appendix 5.2:……………………………………………………………………………176
iii
LIST OF SCHEMES
Scheme 1. 1 Electronic structure of carbenes……………………………………………………………1
Scheme 1. 2 (a) three bonding type of the NHC-metal bond. (b) representation of the sphere
dimensions for steric parameter determination (%VBur) of NHC ligands. (Both drawing were
reproduced from references)....................................................................................................................3
Scheme 2. 1 The typical, textbook catalytic cycle of the Heck reaction. .................................................7
Scheme 2. 2 The synthesis of [(BuCCmeth)2Pd][BF4]2............................................................................11
Scheme 2. 3 Synthesis of the pyridinium-tagged bis-imidazolium salts……………………………….13
Scheme 2. 4 The synthesis of [(PyBuCCmeth)2Pd][PF6]6 and [(PyBuCCmeth)PdCl]2[PF6]6 through Ag
transfer route……………………………………………………………………………………………15
Scheme 3. 1 Synthesis of Cu-NHC complexes and related decomposition process. .............................61
Scheme 3. 2 C-N bond cleavage of phenyl-bis (3-methylimidazolium-1-yl) methane dichloride.........62
Scheme 3. 3 C-N cleavage/ C-C formation of imidazolium salt by Cu2O after aerial oxidation ...........64
Scheme 3. 4 Synthesis of [(Me2biim)Cu]2Cl4 from [(MeCCMe)Cu]2[PF6]2........................................68
Scheme 4. 1 Formation of Ru(II) complexes containing pincer-type Pyrazinyl N-Heterocyclic Carbenes
Ligands. .................................................................................................................................................88
Scheme 4. 2 Methylation of [(BuCPC)2Ru][PF6]2 .................................................................................91
Scheme 5. 1 Pt(II) complexes derived from terdentate ligands............................................................119
Scheme 5. 2 (a) trans- (PPh3)2PtHCl,NaBF4, refluxing toluene, (b) trans- [Et3P]2Pt2Cl4, refluxing
xylene. (c) trans- (PPh3)2PtCl2, refluxing toluene. (d) trans- (PPhMe2)2PtCl2, refluxing toluene. (e)
trans- (PPh3)2PtMeI, refluxing toluene. (f) PtMe3I, refluxing m-xylene. (g) CH(OEt)3, (COD)PtCl,
DMF in high temperature. ....................................................................................................................123
iv
Scheme 5. 3 Synthesis of monomeric Pt(II) complex with pincer-type NHC ligand…………………125
Scheme 5. 4 Synthesis of [BuCNCPtCl]Cl …………………………………………………………...142
Scheme 5. 5 Proposed structural rearrangement of [BuCNCPtCl]Cl involving the dehydration to
account for the observed changes in the emission…………………………………………………….162
v
LIST OF FIGURES
Figure 2. 1 Cationic part of [(BuCCmeth)2Pd][BF4]2 with ellipsoids drawn at 30% probability. Selected
bond lengths (Å) and angles (°): Pd1-C22, 2.024(6); Pd1-C29, 2.036(5); C22-Pd1-C29i, 83.16(1)°.
Symmetry codes: (i) −x, 1 − y, − z. ........................................................................................................18
Figure 2. 2 Molecular structure of [(PyBuCCmeth)Ag]2[PF6]6. ORTEP drawing (50% thermal ellipsoids),
hydrogen and PF6
¯ are omitted for clarity. ..............................................................................................19
Figure 2. 3 Molecular structure of [(PyBuCCmeth)PdCl]2[PF6]6. ORTEP drawing (50% thermal
ellipsoids). PF6¯ are omitted for clarity. .................................................................................................20
Figure 2. 4 Molecular structure of [(BrBuCCmeth)2Pd][PF6]2. ORTEP drawing (30% thermal ellipsoids),
hydrogen and PF6¯ are omitted for clarity. .............................................................................................21
Figure 2. 5 Time-yield comparison of system with addition of 1 eq. TBAB and system without TBAB
in Heck reaction of aryl bromide and styrene.........................................................................................26
Figure 2. 6 Reaction profile for high (▲) and low (♦)[(BuCCmeth)2Pd][BF4]2 concentration in Heck
reaction. .................................................................................................................................................27
Figure 2. 7 Top: product yield in each cycle of repetitive process for Heck reaction. Reaction condition:
1 mmol aryl bromide, 1.5 mmol styrene, 2 mmol NaOAc, 1.2 mol % Pd cat., 0.5 mL DMF, 140℃, 2 h
for each cycle. 1 mmol TBAB is added only in the first cycle. Isolated yield including trace amount of
gem olefin detected by 1H NMR. Bottom: Reaction profiles of repetitive runs in Heck reaction. ........29
Figure 2. 8 Recycle profile of Pd(II)-NHCs. Reaction condition: 1 mmol aryl bromide, 1.5 mmol
styrene, 2 mmol NaOAc, 1.5 mol % Pd cat., 2.5 mL DMF, 140℃, completed reaction time of each
complex are estimated from comparative activity profile (Table 2.4) for each cycle. Trace amount of
gem olefin detected by GC . ...................................................................................................................39
Figure 2. 9 Recycle profile of Pd(II)-NHCs in aqua system. Reaction condition: 1 mmol aryl bromide,
1.5 mmol styrene, 2 mmol NaOAc, 1.5 mol % of Pd center, 2.5 mL H2O, 140℃in sealed tube,
completed reaction time of each complex are estimated from comparative activity profile (Table 2. 5)
for each cycle, namely 4 hours for Pd(OAc)2, 4 hours [AcetalCAcetalPdCl2]2, 8 hours for
[(PyCAcetal)2Pd][Br]2, 12 hours for [(PyBuCCmeth)2Pd][PF6]6 and 8 hours for [(PyBuCCmeth)PdCl]2[PF6]6.
...............................................................................................................................................................48
vi
Figure 3. 1 (a) Comparative 1H NMR spectra of [BuCCMe-H]Cl2, [(BuCCMe)Cu]2Cl2, and C-C
coupled product, Bu2-biimidazole, in DMSO-d6 (* solvent and moisture peaks). (b) 13C NMR
spectrum of [BuCCMe-H]Cl2 in DMSO-d6 (* solvent peak)....................................................................67
Figure 3. 2 The molecular structure of [(MeCCMe)Cu]2[PF6]2. (a) ORTEP drawing (30% ellipsoid) of
[(MeCCMe)Cu]2[PF6]2 with partial atomic numbering,; selected distances [Å] and angles [o]: Cu1-C8,
2.112(8); Cu2-C7, 2.083(8); Cu1-Cu2, 3.350; C1-Cu1-C1’, 167.6(4); C7-Cu2-C7’, 170.3(4). (b)
Packing diagram of [(MeCCMe)Cu]2[PF6]2. ............................................................................................69
Figure 3. 3 (a) ORTEP plot (30% ellipsoid) of [(Me2biim)Cu]2Cl4. Hydrogen are omitted for clarity.
Selected interatomic distances (A°) and angles (deg) are as follows. Cu1-Cu2, 3.594; Cu1-N4, 1.981(2);
Cu1-Cl3, 2.2456(5); Cu2-N3, 1.965(1); Cu2-Cl4, 2.2346(6); Cl4-Cu2-Cl4, 135.46(4); Cl3-Cu1-Cl3,
135.69(4); N3-Cu2-N3, 140.72(9); N4-Cu1-N4, 141.37(9). (b) ORTEP plot (30% ellipsoid) of
[(Bu2biim)Cu]2Cl4. ...............................................................................................................................70
Figure 3. 4 Top: Electronic absorption spectrum of [(Me2biim)Cu]2Cl4 (0.1 mM) in H2O. Bottom:
Emission spectrum of [(Me2biim)Cu]2Cl4 (1x10-5 M, λex = 580 nm in H2O)………………………….72
Figure 3. 5 Molecular structure of [MeCMe]2CuI with ellipsoids drawn at 50% probability. Selected
bond lengths (Å) and angles (°): Cu1-C5, 1.901(2); Cu1-I1, 3.034(2); C5–Cu1–C5i, 156.48(9)
Symmetry code: (i) x, −y+1/2, z.............................................................................................................81
Figure 4. 1 (left) Photophysically appealing Ru(II)(bpy)3 versus (right) synthetically appealing
Ru(II)(tpy)2............................................................................................................................................84
Figure 4. 2 The Ru(II)-NHC complex reported in 2004 by Lee et al.....................................................86
Figure 4. 3 Top: Comparison of 1H-NMR spectrum between [(BuCPC)2Ru][PF6]2 ,
{Me}2{[(BuCPC)2Ru][PF6]2}{BF4}2 and H+[(BuCPC)2Ru][PF6]2..........................................................92
Figure 4. 4 (top) Molecular structure of one (defined as cation A) of the two independent cations in
[(meCPC)2Ru][PF6]2 with thermal ellipsoids plotted at 30% probability level. Hydrogen atoms and the
anion are omitted. (bottom) 1-D chain of the cations. ............................................................................95
Figure 4. 5 Molecular structure of [(BuCPC)2Ru][PF6]2 with thermal ellipsoids plotted at 30%
probability level. Hydrogen atoms and the anion are omitted. ...............................................................96
vii
Figure 4. 6 Absorption spectra of [(meCPC)2Ru]Cl2, [(meCPC)2Ru][PF6]2, [(BuCPC)2Ru]Cl2 and
[(BuCPC)2Ru][PF6]2 in acetonitrile at 300 K(concentration = 2.5 × 10-5 M). ......................................99
Figure 4. 7a Top: UV-vis absorption change of [(BuCPC)2Ru][PF6]2 (concentration = 2.5 × 10-5 M) in
acetonitrile with increasing [HClO4]. Insect: plot of absorptions at 477 nm against the total
concentration of [HClO4]. Bottom: UV-vis absorption change of [(meCPC)2Ru][PF6]2 (concentration
= 2.5 × 10-5 M) in acetonitrile with increacing [HClO4]. Insect: plot of absorptionce at 477 nm against
the total concentration of [HClO4]…………………………………………………………………….103
Figure 4.7b Top: Changes in the luminescence spectrum of complex [(BuCPC)2Ru][PF6]2
(concentration = 2.5 × 10-5 M) upon addition of various concentrations of HClO4 in acetonitrile;
bottom: Changes in the luminescence spectrum of complex [(meCPC)2Ru][PF6]2 (concentration = 2.5
× 10-5 M) upon addition of various concentrations of HClO4 in acetonitrile…………………………104
Figure 4. 8 top: HOMO and LUMO diagrams of [(meCPC)2Ru]2+; bottom: HOMO and LUMO
diagrams of protonated [(meCPC)2Ru]2+……………………………………………………………...106
Figure 4. 9 Absorption spectra of [(BuCPC)2Ru][PF6]2 (dash line), protonated [(BuCPC)2Ru][PF6]2
(thin line), {Me}2{[(BuCPC)2Ru][PF6]2}{BF4}2 (bold line) in acetonitrile at 300K………………….109
Figure 4. 10 Cyclic voltammetric curves of mononuclear complexes: 1 mM [(BuCPC)2Ru][PF6]2 (dash
line) and {Me}2{[(BuCPC)2Ru][PF6]2}{BF4}2 (bold line) in a 0.06 M TBAB/CH3CN solution; working
electrode Pt disk, diameter : 125 μm; T : 25 °C; scan rate: 1 V/s……………………………110
Figure 5. 1 Top. Left: Cation of [MesCNCPtCl]Cl (30% probability ellipsoids, hydrogen atoms are
omitted for clarity). Right: packing diagram showing opposite orientation of cations. Bottom. Left:
structure of [MesCNCPtCl]PF6 ·Acetone (30% probability ellipsoids, hydrogen atoms are omitted for
clarity). Right: packing diagram showing opposite orientation of cations……………………………132
Figure 5. 2 Left: Cation of [MesCNCPt(CH3CN)][PF6]2 ·MeCN (30% probability ellipsoids, hydrogen
atoms are omitted for clarity). Right: packing diagram of [MesCNCPt(CH3CN)][PF6]2·MeCN……..133
Figure 5. 3 Displacement of the free CH3CN by H2O in
[MesCNCPt(CH3CN)][PF6]2·MeCN…………………………………………………..………………135
Figure 5. 4 Left: Cation of [MesCNCP(Py)][PF6]2 ·H2O (30% probability ellipsoids, water molecules
and hydrogen atoms are omitted for clarity). Right: packing diagram of [MesCNCP(Py)][PF6]2·H2O,
water molecules are omitted…………………………………………………………………………..136
viii
Figure 5. 5 Up left: Cation of [MesCNCPt(CO)][PF6]2 · 2Acetone (30% probability ellipsoids,
hydrogen atoms are omitted for clarity). Up right: packing diagram of [MesCNCPt(CO)][PF6]2·
2Acetone; Down: structure of [MesCNCPt(COOH)][PF6] · 1/2 H2O (30% probability ellipsoids,
hydrogen atoms are omitted for clarity)……………………………………………………………….137
Figure 5. 6 Thermogravimetric analysis of [BuCNCPtCl]Cl-A (solid black line) and
[BuCNCPtCl]Cl-B (dash red line)…………………………………………………………………….144
Figure 5. 7 (a) ORTEP drawing of complex [BuCNCPtCl]Cl-A with atomic numbering scheme.
Hydrogen atoms, water molecules and anions are omitted for clarity. Packing diagram of
[BuCNCPtCl]Cl-A (b), [BuCNCPtCl]Cl-B .The shortest Pt-Pt distance in [BuCNCPtCl]Cl A,
[BuCNCPtCl]Cl-B are 3.5096(7) Å, 3.5185(19) Å, respectively……………………………………..146
Figure 5. 8 Electronic absorption spectra of [MesCNCPtCl]Cl in dichloromethane solution at 298
K.( concentration = 10-4 M)…………………………………………………………………………...152
Figure 5. 9 Electronic absorption spectra of [MesCNCPt(Py)][PF6]2 (-) and
[MesCNCPt(CH3CN)][PF6]2 (- - -) in dichloromethane solution at 298 K……………………………153
Figure 5. 10 Electronic absorption spectra of [MesCNCP(CO)][PF6]2 in dichloromethane solution at
298 K…………………………………………………………………………………………………..154
Figure 5. 11 Emission spectra of monomeric Pt(II) complexes at 300 K in the dichloromethane…...156
Figure 5. 12 Electronic absorption spectra of [BuCNCPtCl]Cl in dichloromethane solution at 298
K………………………………………………………………………………………………………157
Figure 5. 13 Emission spectra of hydrated [BuCNCPtCl]Cl-A and anhydrated [BuCNCPtCl]Cl-B at
300 K in the solid state………………………………………………………………………………..158
Figure 5. 14 Solid-state excitation spectra of hydrated [BuCNCPtCl]Cl-A and anhydrated
[BuCNCPtCl]Cl-B…………………………………………………………………………………….159
Figure 5. 15 Solid-state absorption spectra of hydrated [BuCNCPtCl]Cl-A and anhydrated
[BuCNCPtCl]Cl-B…………………………………………………………………………………….159
Figure 5. 16. HOMO and LUMO diagrams of [BuCNCPtCl]Cl-B cationic dimer………………….160
ix
Figure 5. 17 The heating process of [BuCNCPtCl]Cl by powder XRD……………………………..163
Figure 5. 18 FTIR spectral changes of [BuCNCPtCl]Cl-A upon heating at 120℃…………………163
Chapter 1:
1 Hoffmann, R. J. Am. Chem. Soc. 1968, 90,1475.
2 Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
3 Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
4 Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2371.
5 (a) Larsen, A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am.
Chem. Soc. 2004, 126, 11130. (b) Wanniarachchi, Y. A.; Khan, M. A.; Slaughter, L.
M. Organometallics 2004, 23, 5881.

Chapter 2
1. (a) Xiao, J.-C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2004, 6, 3845. (b) Morisaki,
Y.; Ishida, T.; Chujo, Y. Org. Lett. 2006, 8, 1029. (c) Yoon, M. S.; Ryu, D.; Kim, J.;
Ahn, K. H. Organometallics 2006, 25, 2409. (d) Yao, Q.; Kinney, E. P.; Zheng, C.
Org. Lett. 2004, 6, 2997. (e) Deagostino, A.; Prandi, C.; Venturello, P. Org. Lett.
2003, 5, 3815. (f) Crowley, J. D.; Hanni, K. D.; Lee, A.-L.; Leigh, D. A. J. Am.
Chem. Soc. 2007, 129, 12092. (g) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev.
2000, 100, 3009. (h) Zhang, X.; Xi, Z; Liu, A.; Chen, W. Organometallics 2008, 27,
4401.
2. Brown, J. M.; Hii, K. K. Angew. Chem., Int. Ed. 1996, 35, 657.
3. (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (b) Christmann,
U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366. (c) Zapf, A.; Beller, M. Chem.
Commun. 2005, 431. (d) Dez-González, S.; Nolan, S. P. Top. Organomet. Chem.
2007, 21, 47. (e) Negishi, E. Handbook of Organopalladium Chemistry for Organic
Synthesis; Wiley: New York, 2002; Vol. 1, p 1209. (f) Beller, M.; Bolm, C.
Transition Metals for Organic Synthesis, 2nd ed.; Wiley: New York, 2004; Vol. 1,
p 271.
4. (a) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804.
(b) Viciu, M. S.; Kissling, R. M.; Stevens, E. D.; Nolan, S. P. Org. Lett. 2002, 4,
2229. (c) Schutz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2004, 23,
6084. (d) Miecznikowski, J. R.; Crabtree, R. H. Organometallics 2004, 23, 629. (e)Viciu, M. S.; Stevens, E. D.; Petersen, J. L.; Nolan, S. P. Organometallics 2004, 23,
3752.
5. Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686.
6. Khetan, S. K.; Collins, T. J. Chem. Rev. 2007, 107, 2319.
7. Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. J. Am. Chem.
Soc.2004, 126, 15876.
8. (a) Cornils, B.; Kuntz, E. G. J. Organomet. Chem. 1995, 502, 177. (b) Smith, R. T.;
Baird, M. C. Inorg. Chim. Acta 1982, 62, 135. (c) Brasse, C. C.; Englert, U.; Salzer,
A. Organometallics 2000, 19, 3818. (d) DeVasher, R. B.; Moore, L. R.;
Shaughnessy, K. H. J. Org. Chem. 2004, 69, 7919. (e) Consorti, C. S.; Aydos, G. L.
P.; Ebeling, G.; Dupont, J. Org. Lett. 2008, 10, 237. (f) Shaugnessy, K. H. Chem. Rev.
2009, 109, 643.
9. Moore, L. R.; Western, E. C.; Craciun, R.; Spruell, J. M.; Dixon, D. A.; O’Halloran,
K. P.; Shaughnessy, K. H. Organometallics 2008, 27, 576.
10. Chisholm, D. M.; McIndoe, J. S. Dalton Trans. 2008, 3933.
11. (a) Herrmann, W.A.; Schwarz, J.; Gardiner, M.G.; Spiegler, M.; J. Organomet.
Chem. 1999, 575, 80; (b) Fehlhammer, W.P.; Bliss, T.; Kernbach, U.; Brüdgam, I.;
J. Organomet. Chem. 1995, 490, 149.
12. Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972; Lin, I. J. B.; Vasam,
C.S. Comment Inorg. Chem. 2004, 25, 75.
13. Lee, C. S.; Pal, S.; Yang, W. S.; Hwang W. S.; Lin, I. J. B. J. Mol. Catal. A:
Chem., 2008, 280, 115.
14. Garrison, J. C.; Simons, R. S.; Talley, J. M.; Wesdemiotis, C.; Tessier, C. A.;
Youngs,W. J. Organometallics 2001, 20, 1276.
15. Lee, C. K.; Vasam, C. S.; Huang, T. W.; Wang, H. M.J.; Yang, R. Y.; Lee, C. S.;
Lin, I. J. B. Organometallics 2006, 25, 3768.
16. Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978.
17. Fehlhammer, W. P.; Bliss, T.; Kernbach, U.; Brüdgam, I. J. Organomet. Chem.
1995, 490, 149.
18. Wanniarachchi, Y. A.; Khan, M. A.; Slaughter, L. M. Organometallics 2004,23,
5881.
19. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
20. Reetz, M. T.; Westermann, E. Angew. Chem. Int. Ed. 2000, 39, 165.
21. Beletskaya, I. P.; Cheprakov, A.V. Chem. Rev. 2000, 100, 3009
22. Frey,G. D.; Schütz, J.; Herdtweck, E.; Herrmann,W. A. Organometallics 2005, 24,
4416.
23. Jeffery, T. J. Chem. Soc. Chem. Commun. 1984, 1287.
24. Nielsen, D. J.; Cavell, K. J.; Skelton, B.W.; White, A. H. Organometallics 2006,
28, 4850.
25. (a) Trzeciak, A. M.; Ziółkowski, J. J. Coord. Chem. Rev. 2005, 249, 2308. (b) Frey,
G. D.; Schütz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2005, 24,
4416. (c) Reetz, M. T.; de Vries, J. G. Chem. Commun. 2004, 1559. (d) de Vries,
J.G. Dalton Trans. 2006, 421.
26. Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.; Faller, J. W.; Crabtree, R. H.Organometallics 2002, 21, 700.
27. (a) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew.
Chem. Int. Ed. 1995, 34, 2371; (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev.
2002, 102, 1731; (c) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314; (d)
Dupont,J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527; (e) Chiu, P. L.;
Lee, H. M. Organometallics 2005, 24, 1692; (f) Lee, H. M.; Zeng, J. Y.; Hu, C. H.;
Lee, M. T. Inorg. Chem. 2004, 43,6822; (g) Herrmann, W. A.; Elison, M.; Fischer,
J.; Kocher, C.; Artus, G. R. Angew. Chem. Int. Ed. 1995, 34, 2372; (h) Herrmann,
W. A.; Schütz, J.; Herdtweck, E. Organometallics 2004, 23, 6084; (i) Karimi, B.;
Enders, D. Org. Lett. 2006, 6, 1237; (j) Tubaro, C.; Biffis, A.; Basato, M.;
Benetollo, F.; Cavell, K. J.; Ooi, L. L. Organometallics 2005, 24, 4153; (k) Xu, L.;
Chen, W.; Xiao, J. Organometallics 2000, 19, 1123.
28. (a) Schmidt, A. F.; Halaiqa, A. Al; Smirnov, V. V. Synlett 2006, 2861;(b) Köhler,
K.; Kleist, W.; Pröckl, S. S. Inorg. Chem. 2007, 46, 1876; (c) de Vries, J.G. Dalton
Trans. 2006, 421.
29. (a) Köhler, K.; Kleist, W.; Pröckl, S. S. Inorg. Chem. 2007, 46, 1876.
30. Zhou, P.; Li, Y.; Sun, P.; Zhou, J.; Bao, J. Chem. Commun. 2007, 1418.
31.(a) Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am. Chem. Soc.
2006,128, 6829;(b) Pal, S.; Hwang, W. S.; Lin, I. J. B.; Lee, C.S. J. Mol. Catal. A:
Chem. 2007, 269, 197.
32. Grushin, V.V.; Alper, H. Chem. Rev. 1994, 94, 1047.
33. Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.; Scopelliti, R.;
Chiappe, C.; Dyson, P. J. Organometallics 2007, 26, 1588.
34. Yang, X.; Fei, Z.; Geldbach, T. J.; Phillips, A. D.; Hartinger, C. G.; Li, Y.; Dyson, P.
J. Organometallics 2008, 27, 3971.
35. Jahnke, M. C.; Pape, T.; Hahn, F. E. Eur. J. Inorg. Chem. 2009, 1960.

Chapter 3:
1. Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I.
J. B. Chem. Rev. 2009, 109, 3561.
2. Poyatos, M.;Mata, J. A.; Peris, E. Chem. Rev. 2009, 109, 3677.
3. (a) McKie, R.; Murphy, J. A.; Park, S. R.; Spicer, M. D.; Zhou, S. Angew.Chem.,
Int. Ed. 2007, 46, 6525; (b) Tulloch, A. A. D.; Danopoulos, A. A.; Kleinhenz, S.;
Light, M. E.;Hursthouse, M. B.; Eastham, G. Organometallics 2001, 20, 2027.
4.(a) Rosenberg, E.; McPhillips, T.; Hardcastle, K. I.; Hajela, S.; Day, M.
Organometallics 1990, 9, 913. (b) Breysse, M.; Guerriche, M.; Cattenot, M. ;
Portefaix, J. L. Catal. Lett. 1991, 9, 127. (c) Mathieu, R.; Yousfi, A. J. Organomet.
Chem. 1992, 426, C33. (d) Hiraki, K.; Matsunaga, T. ; Kawano, H.
Organometallics. 1994, 13,1878. (e) Arnold, J. ; Hagadorn, J. R. Organometallics
1994, 13, 4670. (f) Wigley, D. E.; Briggs, P. M.; Bruck, M. A.; Weller, K. J.; Gray,
S. D. J. Am. Chem. Soc. 1995, 117, 10678. (g) Wigley, D. E.; Briggs, P. M.; Gray, S.
D.; Weller, K. J. Organometallics 1995, 14, 5588. (h) Easton, C. J.; Eichinger, S. K.;
Pitt, M. J. Tetrahedron. 1997, 53, 5609. (i) Lei, Y.; Wrobleski, A. D.; Golden, J. E.;
Powell, D. R.; Aube, J. J. Am. Chem. Soc. 2005, 127, 4552 (j) Fran, L.; Yang, L.;
Guo, C.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 4778. (k) Yao,
M. L.; Adiwidjaja, G.; Kanfmann, D. E. Angew. Chem., Int. Ed. 2002, 41, 3375. (l)
Niklas, N.; Heinemann, F. W.; Hampel, F.; Alsfasser, R. Angew.Chem., Int. Ed.
2002, 41, 3386. (m) Mas-Marza, E.; Poyatos, M.; Sanau, M.; Peris, E. Inorg. Chem.
2004, 43, 2213. (n) Mas-Marza, E.; Poyatos, M.; Sanau, M.; Peris, E.
Organometallics 2004, 23, 323.
5. Jang, S-H.; Jun, C-H. Bull. Korean Chem. Soc. 1999, 20, 30.
6. (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 6098. (b) Liu,
J.; Robins, M. J. Org. Lett. 2004, 6, 3421.
7. Huang, X.; Fu, D.; Xiong, R. CRYSTAL GROWTH & DESIGN. 2008, 8, 1795.
8.(a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b)
Dıaz-Requejo, M. M.; Perez, P. J. Chem. Rev. 2008, 108, 3379. (c) Ritleng, V.;
Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (d) Dyker, G. Angew. Chem., Int.
Ed. 1999, 38, 1698. (e) Kakiuchi, F.; Murai, S.; Acc. Chem. Res. 2002, 35, 826. (f)
Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (g) Campeau, L.
C.; Fagnou, K. Chem. Commun. 2006, 1253. (h) Li, C. J.; Acc. Chem. Res. 2009, 42,
335.
9. (a) Sang, R.; Xu, L. Inorg. Chem. 2005, 44, 3731. (b) Park, S. B.; Alper, H. Org.
Lett. 2003, 5, 3209. (c) Xiao, J.; Twamley, B.; Shreeve, J. M. Org. Lett. 2004, 6,
3845.
10. (a) Melloni, P.; Dradi, E.; Logemann, W. J. Med. Chem. 1972, 726. (b) J. Xiao and
J. M. Shreeve, J. Org. Chem. 2005, 70, 3072.
11. Lee, C. S.; Pal, S.; Yang, W. S.; Hwang, W. S.; Lin, I. J. B. J. Mol. Catal. A: Chem.
2008, 280, 115.
12. Shishkov, I. V.; Rominger, F.; Hofmann, P. Dalton Trans. 2009, 1428.
13. (a) Quezada, C. A.; Garrison, J. C.; Panzner, M. J.; Tessier, C. A.; Young, W. J.
Organometallics. 2004, 23, 4846. (b) Wang, H. M. J.; Lin, I. J. B.
Organometallics. 1998, 17, 972. (c) Matsumoto. K, Matsumoto. N , Ishii. A,Tsukuda. T, Hasegawa. M, Tsubomura. T. Dalton Trans. 2009, 6795.
14. (a) Diez-González, S.; Scott, N. M.; Nolan, S. P. Organometallics. 2006, 25, 2355.
(b) Arduengo, A. J.; Dias, H. V. R.; Calabrese, J. C.; Davidson, F. Organometallics.
1993, 12, 3405. (c) Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K.
Organometallics. 2004, 23, 755. (d) Kaur, H.; Zinn, F. K.; Stevens, E. D.; Nolan,
S. P. Organometallics. 2004, 23, 1157. (e) Diez-González, S.; Nolan, S. P.
Aldrichimica Acta. 2008, 41, 43.
15. Goulle, V. R.; Thummel, P. Inorg. Chem. 1990, 29, 1767.
16. (a) Kang, S-K.; Kim, H-S.; Kim, Y. I. Bull. Korean Chem. Soc. 2004, 25, 1959. (b)
Solomon, E. I. Inorg. Chem. 2006, 45, 8012. (c) Solomon, E. I.; Szilagyi, R. K.;
DeBeer George, S.; Basumallick, L. Chem. Rev. 2004, 104, 419.
17. Sang, R.; Xu, L. Inorg. Chem. 2005, 44, 3731.
18. Ahrens, S.; Zeller, A.; Taige, M.; Strassner, T. Organometallics, 2006, 25, 5409.
19. Quezada, C. A.; Garrison, J. C.; Panzner, M. J.; Tessier, C. A.; Young, W. J.
Organometallics, 2004, 23, 4846.
20. Ogata, M.; Matsumoto, H.; Shimizu, S.; Kida, S.; Shiro, M.; Tawara, K. J. Med.
Chem, 1987, 30, 1348.
21. Melloni, P.; Dradi, E.; Logemann, W. J. Med. Chem, 1972, 15, 726.
22. Xiao, J.; Twamley, B.; Shreeve, J. M. Org. Lett, 2004, 6, 3845.
23. (a)Badaj, A. C.; Dastgir, S.; Lough, A. J.;Lavoie, G. G. Dalton Trans., 2010, 39,
3361;(b).Venkatachalam, G.; Heckenroth, M.; Neels, A.; Albrecht, M. Helv. Chim.
Acta. 2009, 92, 1034.

Chapter 4:
1. (a) Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 77, 347; (b)
Balzani,V.; Scandola, F. Supramolecular Photochemistry, Ellis Horwood, New
York, 1991; (c) Hammarstrom, L. Curr. Opin. Chem. Biol. 2004, 7, 666; (d) Huynh,
M.-H.V.; Dattelbaum, D.M.; Meyer, T. J. Coord. Chem. Rev. 2005, 457, and
references therein; (e) Palacios, R. E.; Gould, S. L.; Herrero, C.; Hambourger, M.;
Brune, A.; Kodis, G.; Liddell, P. A.; Kennis,J.; Macpherson, A. N.; Gust, D.; Moore,
T. A.; Moore, A. L.; Pure Appl. Chem. 2005, 77, 1001, and references therein; (f)
Balzani,V.; Ceroni, P.; Maestri, M.; Saudan, C.; Vicinelli,V. Top. Curr. Chem. 2003,
228, 159; (g) Balzani, V.; Photochem. Photobiol. Sci. 2003, 2, 459; (h) Collin, J.-P.;
Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. Coord. Chem. Rev. 1996, 148,
63;(i) Harriman, A.; Sauvage, J.-P. Chem. Soc. Rev. 1996, 25, 41.
2. (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, S.; Von Zelewsky,
A. Coord. Chem. Rev. 1988, 84, 85; (b) Keefe, M. H.; Benkstein, K. D.; Hupp, J. T.
Coord. Chem. Rev. 2000, 205, 201; (c) Padilla-Tosta, M. E.; Lloris, J. M.;
Martıńez-Mańẽz, R.; Pardo, T.; Soto, J.; Benito, A.; Marcos, M. D. Inorg. Chem.
Commun. 2000, 3, 45; (d) McFarland, S. A.; Finney, N. S. Chem. Commun. 2003,
388; (e) Richter, M. M. Chem. Rev. 2004, 104, 3003; (f) Chow, C.-F.; Lam, M. H.
W.; Wong, W.-Y. Inorg. Chem. 2004, 43, 8387; (g) Liu, Y.; Chouai, A.; Degtyareva,
N. N.; Lutterman, D. A.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2005, 127,
10796; (h) Coronado, E.; Galan-Mascaros, J. R.; Marti-Gastaldo, C.; Palomares, E.;
Durrant, J. R.; Vilar, R.; Grätzel, M.; Nazeeruddin, Md. K. J. Am. Chem. Soc. 2005,
127, 12351; (i) Nazeeruddin, M. K.; Di Censo, D.; Humphry-Baker, R.; Grätzel, M.
Adv. Funct. Mater. 2006, 16, 189; (j) Haddour, N.; Chauvin, J.; Gondran, C.;
Cosnier, S. J. Am. Chem. Soc. 2006, 128, 9693; (k) Schmittel, M.; Lin, H.-W.
Angew. Chem., Int. Ed. 2007, 46, 893; (k) Gao, F. G.; Bard, A. J. J. Am. Chem. Soc.
2000, 122, 7426;(l) Grätzel, M. Nature 2001, 414, 338; (m) Osawa, M.; Hoshino,
M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 3472; (n) Anzenbacher, P., Jr.;
Tyson, D. S.; Jursikova, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232;
(o) Glazer, E. C.; Tor, Y. Angew. Chem., Int. Ed. 2002, 41, 4022; (p) Galoppini, E.;
Guo, W.; Zhang, W.; Hoertz, P. G.; Qu, P.; Meyer, G. J. J. Am. Chem. Soc. 2002,
124, 7801; (q) Welter, S.; Brunner, K.; Hofstraat, J. W.; De Cola, L. Nature 2003,
421, 54; (r) Passalacqua, R.; Loiseau, F.; Campagna, S.; Fang, Y. Q.; Hanan, G. S.
Angew. Chem., Int. Ed. 2003, 42, 1608; (s) Chow, C. F.; Chiu, B. K. W.; Lam, M.
H. W.; Wong, W. Y. J. Am. Chem. Soc. 2003, 125, 7802; (t) Anzenbacher, P., Jr.;
Tyson, D. S.; Jursikova´, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232
3 (a) Licini, M.; Williams, J. A. G. Chem. Commun. 1999, 1943; (b) Lo, K. K.-W.;
Chung, C.-K.; Lee, T. K.-M.; Lui, L.-H.; Tsang, K. H.-K.; Zhu, N. Inorg. Chem.2003, 42, 6886; (c) Huynh, L.; Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners,
I.; Winnik, M. A. Chem. Mater. 2005, 17, 4765; (d) Lo, K. K-W; Chung C.-K.; Zhu,
N. Chem. Eur. J. 2006, 12, 1500-1512. (e) Ho, M.-L.; Hwang, F.-M.; Chen, P.-N.;
Hu, Y.-H.; Cheng, Y.-M.; Chen, K.-S.; Lee, G.-H.; Chi, Y.; Chou, P.-T. Org. Biomol.
Chem. 2006, 4, 98.
4 (a) Baranoff, E.; Collin, J.-P.; Flamigni, L.; Sauvage, J.-P. Chem. Soc. Rev. 2004, 33,
147; (b) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin
Complexes, first ed., Academic Press Limited, San Diego, 1992; (c) Roundhill,
D.M. Photochemistry and Photophysics of Metal Complexes, Plenum Press, New
York, 1994;(d) McCusker,J.K. Acc. Chem. Res. 2003,36, 876.
5. MacDonnell, F. M.; Bodige, S. Inorg. Chem. 1996, 35, 5758.
6. Son, S.U.; Park, K.H.; Lee, Y.-S.; Kim, B.Y.; Choi, C.H.; Lah, M. S.; Jang, Y. H.;
Jang, D.-J.; Chung,Y. K. Inorg. Chem. 2004,43, 6896.
7. Qin, D.; Zeng, X.; Li, Q.; Xu, F.; Song, H.; Zhang, Z.-Z. Chem. Commun. 2007,
147.
8. Poyatos, M.; Mata, J. A.;Falomir, E.; Crabtree, R. H.; Peris, E. Organometallic,
2003, 22, 1110.
9. (a) Wright, J. A.; Danopoulos, A. A.; Motherwell, W. B.; Carroll, R. J.; Ellwood, S.
J. Organomet. Chem. 2006, 691, 5204; (b) Danopoulos, A. A.;Winston, S.;
Motherwell,W. B. Chem. Commun. 2002, 1376; (c) Chiu, P. L.; Lee, H. M.
Organometallics 2005, 24, 1692; (d) Masllorens, E.; Rodríguez, M.; Romero, I.;
Roglans, A.; Parella, T.; Benet-Buchholz, J.; Poyatos, M.; Llobet, A. J. Am. Chem.
Soc. 2006, 128, 5306.
10. (a) Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem. Soc.
1982, 104, 630; (b) Treadway, J. A.; Loeb, B.; Lopez, R.; Anderson, P. A.; Keene,
F. R.;Meyer, T. J. Inorg. Chem., 1996, 35, 2242.
11. (a) Ryu,C. K.; Wang,R.; Schmehl, R. H.; Ferrere, S.; Ludwikow,M.; J. W.
Merkert, C. E. L. Headford, C. M. Elliott, J. Am. Chem. Soc., 1992, 114, 430; (b)
Cooley,L. F.; Headford, C. E. L.; Elliott, C. M. ; Kelley, D. F. J. Am. Chem. Soc.,
1988, 110, 6673;(c) Yonemoto, E. H.; Riley, R. L.; Kim, Y. I.; Atherton, S. J.;
Schmehl, R. H. ; Mallouk, T. E., J. Am. Chem. Soc., 1992, 114, 8081.

Chapter 5:
1. (a) Lai, S. W.; Che, C. M. Top. Curr. Chem., 2004, 241, 27; (b) Wong, K. M. C.;
Yam, V. W. W. Coord. Chem. Rev., 2007, 251, 2477; (c) Gareth Williams, J. A.,
Top. Curr. Chem., 2007, 281, 205; (d) McMillin, D. R.; Moore, J. J. Coord. Chem.
Rev., 2002, 229, 113; (e) Cummings, S. D. Coord. Chem. Rev., 2009, 253, 449; (f)
Eryazici, I.; Moorefield, C.N.; Nekowe, G. R. Chem. Rev., 2008, 108,1834; (g)Tam, A. Y. Y. ; Wong, K. M. C.; Yam, V. W.W. J. Am. Chem. Soc., 2009, 131,
6253.
2. (a) Barton, J. K.; Lippard, S. J. Biochemistry 1979, 18, 2661; (b) Liu, H. Q.;
Cheung, T. C.; Che, C. M. Chem. Commun. 1996, 1039; (c) Che, C. M.; Yang, M.;
Wong, K. H.; Chan, H. L.; Lam, W. Chem.- Eur. J. 1999, 5, 3350; (d) Che, C. M.;
Zhang, J. L.; Lin, L. R. Chem. Commun. 2002, 2556; (e) Ma, D. L.; Che, C. M.
Chem.-Eur. J. 2003, 9, 6133.
3. (a) Farley, S. J.; Rochester, D. L.; Thompson, A. L.; Howard, J. A. K.; Williams, J.
A. G. Inorg. Chem., 2005, 44, 9690.(b) Williams, J. A. G.; Beeby, A.; Davies, E. S.;
Weinstein, J. A.; Wilson, C. Inorg. Chem., 2003, 42, 8609.(c) Jude, H.; Kraus
Bauer, J. A.; Connick, W. B. Inorg. Chem. 2002, 41, 2275.(d) Jude, H.; Kraus
Bauer, J. A.; Connick, W. B. Inorg. Chem. 2004, 43, 725.
4. (a) Chan, C. W.; Lai, T. F.; Che, C. M; Peng, S. M. J. Am. Chem. Soc., 1993, 115,
11245; (b) Constable, E. C.; Henney, R. P. G.; Leese,T. A.; Tocher, D. A. J. Chem.
Soc., Dalton Trans., 1990, 443; (c) Constable, E. C.; Henney, R. P. G.; Leese,T.
A.;Tocher, D. A. J. Chem. Soc., Chem. Commun., 1990, 513; (d) Schneider,J.; Du,
P.; Jarosz, P.; Lazarides, T.; Wang, X.; Brennessel, W. W.; Eisenberg, R. Inorg.
Chem., 2009, 48, 4306.
5. (a) Lu,W.; Chan, M. C. W.; Cheung, K. K.;Che, C. M. Organometallics, 2001, 20,
2477; (b) Kui, S. C. F.; Chui, S. S. Y.; Che, C. M.; Zhu, N. J. Am. Chem. Soc.,
2006, 128, 8297; (c) Yam, V. W. W.; Tang, R. P. L.; Wong, K. M. C.; Lu, X. X.;
Cheung, K. K.; Zhu, N. Chem. Eur. J., 2002, 8, 4066.
6. (a) Bailey, J. A.; Hill, M. G.; Marsh, R. E.; Miskowski, V. M.; Schaefer, W. P.;
Gray, H. B. Inorg. Chem. 1995, 34, 4591; (b) Arena, G.; Calogero, G.; Campagna,
S.; Monsu Scolaro, L.; Ricevuto, V.; Romeo, R. Inorg. Chem. 1998, 37, 2763; (c)
Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Inorg. Chem. 1999, 38,
4262; (d) Michalec, J. F.; Bejune, S. A.; McMillin, D. R. Inorg. Chem. 2000, 39,
2708; (e) Yam, V. W. W.; Tang, R. P. L.; Wong, K. M. C.; Ko, C. C.; Cheung, K.
K. Inorg. Chem. 2001, 40, 571; (f) Yam, V. W. W.; Wong, K. M. C.; Zhu, N. J. Am.
Chem. Soc. 2002, 124, 6506.
7. (a) Herrmann, W. A. Angew. Chem. Int. Ed., 2002, 41, 1290; (b) Hahn, F. E.;
Jahnke, M. C. Angew. Chem., Int. Ed., 2008, 47, 3122; (c) Pugh, D.; Danopoulos,
A. A. Coord. Chem. Rev., 2007, 251, 610. (d) McGuinness, D. S.; Cavell, K. J.;
Yates, B. F. Chem. Commun., 2001, 355.
8. (a) Locklin, J.; Shinbo, K.; Onishi, K.; Kaneko, F.; Bao, Z.; Advincula, R. C. Chem.
Mater. 2003, 15, 1404; (b) Hepp, A.; Heil, H.; Schmechel, R.; Von Seggern, H.;
Adv. Eng. Mater. 2005, 7, 957.
9. Iwasaki, F.; Nishiyama, H.; Yasui, M.; Kusamiya, M.; Matsumura, N. Bull. Chem.Soc. Jpn., 1997, 70, 1277.
10. Arduengo, A. J. III; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am.
Chem.Soc., 1994, 116, 4391.
11. Green, J. C.; Scurr, R. G.; Arnold, P. L.; Cloke, F. G. N. Chem. Commun., 1997,
1963.
12 .(a) Muehlhofer, M.; Strassner, T.; Herdtweck, E.; Herrmann, W. A. J.
Organometallic Chem., 2002, 660, 121. (b) Quezada, C. A.; Garrison, J. C.;
Tessier, C. A.; Youngs, W. J. J. Organomet. Chem., 2003, 671, 183. (c) Sprengers,
J. W.; Mars, M. J.; Duin, M. A.; Cavell, K. J.; Elsevier, C. J. J. Organomet.Chem.,
2003, 679, 149. (d) Sprengers, J. W.; Mars, M. J.; Duin, M. A.; Cavell, K. J.;
Elsevier, C. J. J. Organomet. Chem., 2003, 679, 183. (f) Liu, Q.-X.; Song, H.-B.;
Xu, F.-B.; Li, Q.-S.; Zeng, X.-S.; Leng, X.-B.; Zhang, Z.-Z. Polyhedron, 2003, 22,
1515. (g) Liu, Q. -X.; Xu, F. -B.; Li, Q. -S.; Song, H. -B.; Zhang, Z.-Z. J.
Molecular Structure, 2004, 697, 131. (h) Liu, Q. X.; Xu, F. B.; Li, Q. S.; Song,
H. B.; Zhang, Z.-Z. Organometallics, 2004, 23, 610.
13. (a) Liu, S. -T.; Hsien, T. -Y.; Lee, G. -H.; Peng, S. -M. Organometallics, 1998, 17,
993. (b) Ku, R. -Z.; Huang, J. -C.; Cho, J. -Y.; Kiang, F. -M.; Reddy, K. -R.; Chen,
Y. -C.; Lee, G. -H.; Peng, S. -M.; Liu, S. -T. Organometallics, 1999, 18, 2145.
14. Newman, C. P.; Deeth, R, J.; Clarkson, G, J.; Rourke, J. P. Organometallics 2007,
26, 6225.
15. (a) Cardin, D. J.; Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc.
Dalton Trans.: Inorg. Chem., 1973, 5, 514; (b)Cetinkaya, B.; Cetinkaya, E.;
Lappert, M. F. J. Chem. Soc. Dalton Trans.: Inorg. Chem., 1973, 9, 906; (c)
Cardin, D. J.; Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc. Dalton
Trans.: Inorg. Chem., 1973, 19, 1982; (d) Cardin, D. J.; Cetinkaya, B.; Lappert, M.
F. J. Organomet. Chem., 1974, 72, 139; (e) Cardin, D. J.; Cetinkaya, B.;
Cetinkaya, E.; Lappert, M. F. J. Organomet. Chem., 1972, 44(2), c59; (f)
Cetinkaya, B.; Dixneuf, P.; Lappert, M. F. J. Chem. Soc. Dalton Trans.: Chem.
Commun., 1973, 6, 206. (g) Cetinkaya, B.; Dixneuf, P.; Lappert, M. F. J. Chem.
Soc. Dalton Trans.: Inorg. Chem., 1974, 16, 1827.
16. Hiraki, K.; Onishi, M.; Ohnuma, K.; Sugino, K.J. Organomet. Chem., 1981, 216,
413.
17. (a) Michelin, R.A.; Zanotto, L.; Braga, D.; Sabatino, P.; Angelici, R. J.
Inorg.Chem. 1988 , 27, 93;(b) Michelin,R.A.; Zanotto,L.; Braga, D.; Sabatino,P.;
Angelici, R. J. Inorg.Chem. 1988, 27, 85; (c) Michelin, R.A.; Mozzon, M.;
Facchin, G.; Braga, D.; Sabatino, P. J.Chem.Soc.,Dalton Trans. 1988,1803.
18. (a) Sellmann, D.; Prechtel, W.; Knoch, F.; Moll, M. Inorg. Chem., 1993, 32, 538.
(b) Sellmann, D.; Allmann, C.; Heinemann, F.; Knoch, F.; Sutter, J. J.Organometallic Chem., 1997, 291.
19. For (a) luminescent NHC-AuI and AgI complexes, see : J. C. Y. Lin, R. T. W.
Huang, C. S. Lee., A. Bhattacharyya, W. S. Hwang and I. J. B. Lin, Chem. Rev.,
2009, 109, 3651.; (b) luminescent NHC-IrIII complexes, see : T. Sajoto, P. I.
Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes
and S. R. Forrest, Inorg. Chem. 2005, 44, 7992; (c) luminescent NHC-RuII
complexes, see : Son, S.U.; Park, K.H.; Lee, Y.-S.; Kim, B.Y.; Choi, C.H.; Lah,
M. S.; Jang, Y. H.; Jang, D.-J.; Chung,Y. K. Inorg. Chem. 2004,43, 6896.; (d)
luminescent NHC-PtII complexes, see : Y. Unger, A. Zeller, S. Ahrens and T.
Strassner, Chem. Commun., 2008, 3263.
20. Ongeri, S.; Aitken, D. J.; Husson, H.-P.; Kozelka, J.; Viossat, B.Inorg. Chem.
2000, 39, 6131.
21. J. C. Y. Lin, R. T. W. Huang, C. S. Lee., A. Bhattacharyya, W. S. Hwang and I. J.
B. Lin, Chem. Rev., , 2009, 109, 3651.
22. Brown,D. H.; Nealon,G. L.; Simpson, P. V.; Skelton, B. W.; Wang, Z.
Organometallics, 2009, 28, 1965.
23. (a) Peris, E.; Loch, J. A.; Mata, J.;Crabtree, R. H. Chem. Commun., 2001, 201; (b)
Inamoto,K.; Kuroda, J.-i.; Hiroya, K.; Noda, Y.; Watanabe, M.;Sakamoto, T.
Organometallics, 2006, 25, 3095. (f) Eryazici, I.; Moorefield, C.N.; Nekowe, G. R.
Chem. Rev., 2008, 108, 1834.
24. (a) Cave, G. W. V.; Fanizzi, F. P.; Deeth, R. J.; Errington, W.; Rourke, J. P.
Organometallics, 2000, 19, 1355; (b) Newman, C. P.; Cave, G. W. V.; Wong, M.;
Errington, W.; Alcock, N. W.; Rourke, J. P. J. Chem. Soc., Dalton Trans. 2001, 2678;
(c) Berenguer, J. R.; Lalinde, E.; Torroba, J. Inorg. Chem. 2007, 46, 9919.
25. Eryazici, I.; Moorefield, C.N.; Nekowe, G. R. Chem. Rev., 2008, 108, 1834.
26. (a) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201; (b)
Inamoto, K.;Kuroda, J.-i.; Hiroya, K.; Noda, Y.; Watanabe, M.; Sakamoto, T.
Organometallics 2006, 25, 3095.
27. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
28 .Son, S.U.; Park, K.H.; Lee, Y.-S.; Kim, B.Y.; Choi, C.H.; Lah, M. S.; Jang, Y. H.;
Jang, D.-J.; Chung,Y. K. Inorg. Chem. 2004, 43, 6896.
29. Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Inorg. Chem. 1999, 38,
4262.
30. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Adamo, C.; Jaramillo, J.; Omperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.
D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, A. Gaussian 03, revision B.04; Gaussian, Inc.,Pittsburgh, PA, 2003.
31. Yip, J. H. K.; Suwarno; Vittal, J. J. Inorg. Chem. 2000, 39, 3537.
32. Zhou, Y.; Zhang, X.; Chen, W.; Qiu, H. J. Organomet. Chem. 2008, 693, 205.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊