|
[1] Ashwin, P., "Synchronization from chaos," Nature (London) 422, 384-385 (2003). [2] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics(SIAM, Philadelphia, 1992). [3] Davis, P. J., Circulant Matrices (Wiley, New York,1979). [4] Guan, S., Lai C. H., and Wei, G. W., "A wavelet method for the characterization of spatiotemporal patterns," Physica D 163, 49-79 (2002). [5] Motter, A. E., Zhou, C. S., and Kurths, J., "Enhancing complex-network synchronization," Europhys. Lett. 69, 334-340 (2005). [6] Ott, E., Grebogi, C., and York, J. A., "Controlling chaos," Phys. Rev. Lett. 64, 1196-1199 (1999). [7] Pecora, L. M. and Carroll T. L., "Master stability functions for synchronized coupled systems," Phys. Rev. Lett. 80, 2109-2122 (1998). [8] Pecora, L. M. and Carroll, T. L., "Synchronization in chaotic systems," Phys. Rev. Lett. 64, 821-824 (1990). [9] Shieh, S. F., Wei, G. W., Wang, Y. Q., and Lai, C.-H., "Mathematical proof for wavelet method of chaos control," J. Math. Phys. (to be published). [10] Wei, G. W., "Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing," Phys. Rev. Lett. 86, 3542-3545 (2001). [11] Wei, G. W., Zhan, M., and Lai, C.-H., "Tailoring wavelets for chaos control," Phys. Rev. Lett. 89, 284103 (2002). [12] Wu. C. W., Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems," Phys. Lett. A 319, 495-503 (2003). [13] Yang, J., Hu, G., and Xiao, J., "Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents," Phys. Rev. Lett. 80, 496-499 (1998). [14] Zhan, M., Wang, X. G., and Gong, X. F., "Complete synchronization and generalized synchronization of one-way coupled time-delay systems," Phys. Rev. E 68(3), 036208 (2003).
|