跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙晛羽
研究生(外文):Hsien-Yu Chao
論文名稱:植物硫鐵蛋白轉殖水稻在鹽逆境下具有較高的光合作用效率
論文名稱(外文):Plant Ferredoxin-like Protein (pflp) Transgenic Rice Exhibits Higher Photosynthesis Activity under Salt Stress
指導教授:葛孟杰
指導教授(外文):Mang-Jye Ger
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:48
中文關鍵詞:植物硫鐵蛋白光合作用鹽逆境可溶性醣類
外文關鍵詞:plant ferredoxin-like protein (PFLP)photosynthesissalt stresssoluble sugar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光合作用是世界上最重要的生化反應之一,其利用光能將二氧化碳進行同化,形成醣類或澱粉以供植物生長。從甜椒萃取之植物硫鐵蛋白(Plant Ferredoxin-Like Protein,PFLP) 經蛋白質序列比對後發現,其序列與阿拉伯芥、蕃茄、水稻及菠菜之第一型硫鐵蛋白有高度同源性。先前研究指出持續表達pflp於台農67號水稻以及蝴蝶蘭中能增強光合作用碳固定的效率。鹽害是目前急待解決的重要課題,據估計全球有大於30%的灌溉區域遭受鹽害的問題。本研究目的在於探討pflp轉殖水稻在鹽逆境之下,是否能維持光合作用效率。實驗結果顯示在鹽逆境下轉殖水稻具有較好的電子傳遞速率,並且維持葉綠素a/b比值。另外轉殖水稻在鹽逆境下累積較少的過氧化物,膜脂質的氧化程度也明顯較低。可溶性醣類含量分析方面,鹽處理之後台農67號水稻不論葡萄糖、果糖或蔗糖的含量相較於轉植株皆大幅上升,而台農67號水稻中降解澱粉相關基因轉錄活性也高於轉殖水稻。綜合上述結果,pflp轉殖水稻具有較佳的鹽逆境抗性,能在鹽逆境下維持正常的生理狀態。
Photosynthesis is the major biochemical pathway that assimilates carbon dioxide (CO2) into organic compounds for plant growth. Plant ferredoxin-like protein (PFLP) was isolated from sweet peppers, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Previous studies show that constitutive expression of the pflp in transgenic plants rice TNG67 and Phalaenopsis can enhance photosynthetic efficiency. Salinity is a major abiotic stress factor limiting growth and productivity of crops in irrigated regions of the world. To investigate the possibility of PFLP may maintains better photosynthetic efficiency under salt stress, two pflp transgenic rice lines were treated with high salinity condition and then detected their photosynthetic efficiency. Transgenic lines maintain better photosynthetic electron transport and chlorophyll a/b ratio under salt stress. Additionally, transgenic lines accumulate less ROS and MDA concentrations under salt stress. TNG67 accumulate highly soluble sugar contents than these of transgenic lines under salt stress. The transcript activity of starch degradation related genes in TNG67 were higher than these of transgenic lines under salt stress. These above results indicate that pflp transgenic rice have higher salinity tolerance to maintain normal growth under salt stress.
Contents......................................................................I
List of Tables...............................................................II
List of Figures .............................................................II
中文摘要........................................................................1 Abstract.......................................................................2
Chapter Ⅰ Introduction ........................................................4
Chapter Ⅱ Materials and methods ...............................................9
2.1 Plant material and salt stress treatments..................................9
2.2 RNA extraction and Reverse transcription PCR...............................9
2.3 H2O2 content..............................................................10
2.4 DAB stain.................................................................10
2.5 MDA.......................................................................11
2.6 Determination of the chlorophyll content..................................11
2.7 Chlorophyll fluorescence measurement......................................11
2.8 Soluble sugars contents assay.............................................12
2.9 Statistical analysis......................................................12
Chapter Ⅲ Results............................................................13
3.1 PFLP can improve transgenic rice tolerance to salt stress.................13
3.2 pflp transgenic lines exhibit higher photosynthetic electron transport
under salt stress.............................................................13
3.3 pflp transgenic lines maintain chlorophyll a/b ration under salt stress...14
3.4 pflp transgenic lines accumulate less ROS and MDA concentrations
under salt stress.............................................................15
3.5 Soluble sugar accumulate in TNG67 higher than these of transgenic
lines under salt stress.......................................................15
3.6 Relatively high expression pattern of starch degradation related gene
in TNG67 rice under salt stress...............................................16
Chapter Ⅳ Discussion........................................................ 18
Chapter Ⅴ References.........................................................33
Supplemental data Ⅰ: List of abbreviation......................................i
Supplemental data Ⅱ: PCR primers.............................................iii
Supplemental data Ⅲ: The kimura B solution...................................iv
References
Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5: 369-374
Arnon DI (1971) The light reactions of photosynthesis. Proc Natl Acad Sci 68: 2883-2892
Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59: 89-113
Bruneau JM, Worrell AC, Cambou B, Lando D, Voelker T (1991) Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants. Plant Physiol 96: 473–478
Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14: 279-288
Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551-560
Cha-um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2008) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant 31: 477-486
Chen HJ, Wang SJ (2012) Abscisic acid enhances starch degradation and sugar transport in rice upper leaf sheaths at the post-heading stage. Acta Physiol Plant 34: 1493-1500
Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K, Ogawa M, Satoh T, Kadokura K, Yamada S, Hakamata W, Isobe K, Ito T, Ishii R, Nishio T, Sonoike K, Oku T (2007) Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol 48: 948-995
Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224: 598-611
Couee I, Sulmon C, Gouesbet G, Amrani AE (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57: 449-459
Dayakar BV, Lin HJ, Chen CH, Ger,MJ ,Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC , Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinpss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51: 913-924
Gibson SI (2000) Plant sugar-response pathways part of a complex regulatory web. Plant Physiol 124: 1532-1539
Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48: 909-930
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125: 189-198
Huang HE, Ger MJ, Yip MK, Chen CY ,Pandey AK, Feng TY (2004) A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Mol Plant Pathol. 64: 103-110
Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302-1304
Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133: 1083-1090
Jaffel K, Sai S, Bouraouia NK, Ammar RB, Legendre L, Lachaal M, Marzouk B (2011) Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.). Plant biosyst 145: 362-369
Jiang ZY, Woolard ACS, Wolff SP (1990) Hydrogen peroxide production during experimental protein glycation. FEBS Lett 268: 69-71
Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci 99: 10209-10214
Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757: 362-368
Kempa S, Krasensky J, Santo SD, Kopka J, Jonak C (2009) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3: e3935
Kern J, Renger G (2007) Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94: 183-202
Khan A, Ahmad MSA, Athar HU, Ashraf M (2006) Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pak J Bot 38: 1407-1414
Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Cur Opin in Plant Biol 7: 235-246
Krause GH (1994) The role of oxygen in photoinhibition of photosynthesis. In: Foyer CH, Mullineaux PM, eds. Causes of photooxidative stress and amelioration of defense systems in plants. Boca Raton: CRC Press 43-76
Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65: 531-546
Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12: 329-336
Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148: 350-382
Lin HJ, Cheng HY, Chen CH, Huang HC, Feng TY (1997) Plant amphipathic proteins delay the hypersensitive response caused by harpinPss and Pseudomonas syringae pv. Syringae. Physiol Mol Plant Pathol 51: 367-376
Lu C, Vonshak A (1999) Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytol 141: 231-239
Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127: 1773-1780
Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164: 157-167
Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579-582
Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59: 165-176
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot (Lond) 89: 841-850
Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8: 87-99
Orzechowski S (2008) Starch metabolism in leaves. Acta Biochim Pol 55: 435-445
Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62: 316-329
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60: 1899-1918
Rohaček K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339-363
Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48: 593-600
Saibo NJ, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot (Lond) 103: 609-623
Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10: 1236-1274
Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161: 1135-1144
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012: 217037
Shin LJ, Huang HE, Chang H, Lin YH, Feng TY, Ger MJ (2011) Ectopic ferredoxin I protein promotes root hair growth through induction of reactive oxygen species in Arabidopsis thaliana. J Plant physiol 168: 434-440
Siringam K, Juntawong N, Cha-um S, Kirdmanee C (2011) Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. Afr J Biotechnol 10: 1340-1346
Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56: 73-98
Sudhir P, Pogoryelov D, Kovacs L, Garab G, Murthy S (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38: 481-485
Summermatter K, Sticher L, Mbtraux JP (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv. syringae. Plant Physiol 108: 1379-1385
Tang K, Sun X, Hu Q, Wu A, Lin CH, Lin HJ, Twyman RM, Christou P, Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 160: 1035-1042
Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localisation of H2O¬2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J 11: 1187-1194
Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141: 373-378
Upadhyaya H, Khan MH, Panda SK (2007) Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa. Gen Apll Plant Physiol 33: 83-95
Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164: 645-655
Wang HL, Lee PD, Chen WL, Huang DJ, Su JC (2000) Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot 51: 1991-1999
Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY (2007) Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. Plant Cell Rep 26: 449-457
Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci 104: 16402-16409
Zhang ZH, Liu Q, Song HX, Rong XM, Abdelbagi MI (2012) Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr J Agric Res 7: 19-27
Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61: 209-234
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top