跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭奕甄
研究生(外文):Yi-ChenKuo
論文名稱:水平軸與垂直軸風力發電機系統之葉片性能分析
論文名稱(外文):The Performance Analysis of Rotor Blades for Horizontal-Axis Wind Turbine (HAWT) and Vertical-Axis Wind Turbine (VAWT)
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:86
中文關鍵詞:水平軸式風機垂直軸式風機風洞實驗
外文關鍵詞:Horizontal-Axis Wind TurbineVertical-Axis Wind TurbineWind Tunnel Test
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1280
  • 評分評分:
  • 下載下載:264
  • 收藏至我的研究室書目清單書目收藏:0
本文之首要目的為風洞實驗來分析市面上兩種主要的風力發電機-水平軸以及垂直軸風力發電機之轉子葉片,並利用數學模型、數值模擬對風洞實驗結果作驗證,研究風機在相同假設條件下的轉子葉片之結果。
在數學模型的方法中,利用葉片動量元素進行水平軸風力發電機葉片之初步性能計算。此外,利用雙多重流管模型對垂直軸風力發電機之葉片做計算;數值模擬則利用商用軟體Fluent在使用相同模型的情況下來對兩者之葉片做計算,觀察兩者在各風速下功率以及功率係數在各尖速比下的變化情形;實驗部分透過調整負載改變尖速比,觀察其輸出功率及功率之變化,經由實驗定義出兩者葉片之最佳操作區間。
將前述三種方式所得到的分析結果相互比較,可得知兩者風機在風速8 m/s下的操作,兩者風機的力矩大約落在0.3~0.4 N-m 之間,但因風機轉速的不同造成輸出效率差別明顯,當轉換成功率係數可知其擷取風能的能力差別,水平軸式風機在此研究中大致為垂直軸式風機的五倍。


This thesis employs the modified blade element momentum theory, computational simulation, and wind tunnel experiment to analyze and compare respectively the performance rotor blades used in Horizontal-Axis wind turbine (HAWT) and Vertical-Axis wind turbine (VAWT).
The Blade element momentum theory is used to predict the rotor performance of HAWT and the adopted double-multiple streamtube model to calculate that of VAWT. For computational simulation, it uses the same turbulent model to simulate the rotors. Furthermore, the performance of the rotor is obtained through the experiments rotor rotation speed, output torque and current and voltage from the generator in terms of the wind speed at various tip speed ratio. It can identify the optimum operation regions of both wind turbines via experiment. Results indicate that the torque output of both wind turbines obtained has almost the same range between 0.3 to 0.4 N-m in experiment under the wind speed of 8 m/s. The maximum torque of VAWT is at TSR of 0.5 while that of HAWT is at TSR of 3.5. The maximum power of HAWT is about 30 watt, which is 6 times larger than VAWT. In addition, the power coefficient of HAWT is about 5 times larger than VAWT, which means that the HAWT has much higher ability to extract the energy in wind than the VAWT. These results are also verified by the modified BEM theory and CFD simulation.

ABSTRACT IN CHINESE i
ABSTRACT ii
ACKNOWLEDGMENTS iii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE xi
CHAPTER Ⅰ INTRODUCTION 1
1.1 Historical Description 2
1.2 Motivation and Objectives 5
1.3 Thesis Overview 5
1.3.1 Horizontal-Axis Wind Turbine (HAWT) 6
1.3.2 Vertical-Axis Wind Turbine (VAWT) 7
1.4 Content of Research 8
CHAPTER Ⅱ BASIC THEORY OF WIND TURBINES 10
2.1 Maximum Power Production in Theory of Wind Trubine 11
2.1.1 Betz Theory 11
2.1.2 The Maximum Power Production in Theory of VAWT 14
2.2 Aerodynamics Characteristic of Wind Turbine 16
2.2.1 System of Coordinate 16
2.2.2 General Concepts of Airfoil 17
2.2.3 Performance Parameters of Wind Turbine 18
CHAPTER Ⅲ METHODS OF RESEARCH 22
3.1 Rotor Performance Analysis 22
3.1.1 Blade Element and Momentum Theory (BEM) 24
3.1.2 Double-Multiple Streamtube Theory (DMS) 29
3.2 Simulation of CFD 32
3.3 Wind tunnel experiment 35
3.3.1 Machinery of Horizontal-Axis Wind Turbine (HAWT) 36
3.3.2 Machinery of Vertical-Axis Wind Turbine (VAWT) 36
3.3.3 Experiement Apparatus 37
CHAPTER Ⅳ RESULTS AND DISCUSSION 39
4.1 Numerical Performance Calculation of Rotor 39
4.2 Computational Fluid Dynamic Simulation 44
4.3 Wind Tunnel Experiment 49
4.4 The Comparison of HAWT and VAWT of three methods 51
4.4.1 The Results of the Comparison of Wind Turbines 51
4.4.2 Variation of Force and Arm of Force with Azimuth Angle of VAWT 52
CHAPTER ⅤCONCLUDNIG REMARKS 54
REFERENCES 57
TABLES 59
FIGURES 61


[1] Sawin, J. and Martinot, E., The Global Market Review, Renewables 2011 Global Status Report, pp. 16−17, 2011.
[2] Sawyer, S. and Rave, K., The Global Status of Wind Power in 2010, Global Wind Report, pp. 12−14, 2010.
[3] Tangler, J. L., The Evolution of Rotor and Blade Design, American Wind Energy Association WindPower 2000, National Renewable Energy Laboratory, California, 2000.
[4] Hu, D. and Du, Z., A Study on Stall-Delay for Horizontal-Axis Wind Turbine, Renewable Energy. No. 31, pp. 821–836, 2006.
[5] Wu, M. F., Bai, C. J., and Hsiao, F. B., Blade Design and Performance Analysis of a 400 Watt Horizontal-Axis Wind Turbine, American Institute of Aeronautics and Astronautics, Annual Science Meeting, January 2010.
[6] Paraschivoiu, I., Double-Multiple Streamtube Model for Darrieus Wind Turbines, Wind Turbine Dynamics, Vol. 4, pp. 370-378, 1981.
[7] Laneville, A. and Vittecoq, P., Dynamic Stall: The Case of the Vertical Axis Wind Turbine, Journal of Solar Energy Engineering Vol. 108, pp. 140-145, 1986,
[8] 鄭沛倫., 支撐臂效應與斜式旋翼垂直軸風力機三維氣動力模擬, 機械工程研究所. 國立中央大學,2011.
[9] Manwell, J. F. and McGowan, J. G., Wind Energy Explained – Theory, Design and Application, John Wiley & Sons, Ltd, 2002.
[10] Lissaman, S. B. and Wilson, E. R., Applied Aerodynamics of Power Wind Machines, University State Oregon Report, 1974
[11] Hansen, A. C. and Butterfield, C. P., Aerodynamics of Horizontal-Axis Wind Turbines, Annual Review of. Fluid Mechanics, Vol. 25, 1993, pp. 115-149.
[12] Drela, M., XFOIL: An Analysis and Design System for Low Reynolds Number Airfoil, Dept. of Aeronautics and Astronautics. MIT, 1989.
[13] Martinez, J., Probst, O. and Rodriguez, C., An Improved BEM Model for the Power Curve Prediction of Stall-regulated Wind Turbines, Wind Energy. Vol. 8, 2005, pp. 385-402.
[14] 吳明芳., 四百瓦水平軸式風力發電機葉片設計與性能, 航空太空研究所. Vol. 碩士論文, 國立成功大學, 2009.
[15] Islam, M. and Fartaj, A., Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines, Renewable and Sustainable Energy Reviews. Vol. 12, pp. 1087-1109, 2008.
[16] Chen, S. J., Chen, Zhi. and Biswas, S., “Torque and Power Coefficient of a Vertical Axis Wind Turbine with Optimal Pitch Control, ASME Conference Proceedings, no. 2010-27224, pp.655-662, 2010
[17] 謝承翰., 垂直軸風力發電機扭力與功率的檢測與模擬, 航空太空研究所. Vol. 碩士論文, 國立成功大學, 2009.
[18] Luo, J. Y., Issa, R. I. and Gosman, A. D., “Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference, In IChemE Symposium Series, No. 136, pp. 549-556, 1994.
[19] Yakhot, V., Thangam, S., Gatski, T. B. and Orszag, S. A., Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Physics of Fluids Association Vol. 4, pp. 1510-1520, 1992.
[20] Iida, A., Kato, K. and Mizuno, A., Numerical Simulation of Unsteady Flow and Aerodynamic Performance of Vertical Axis Wind Turbines with LES, 16th Australasian Fluid Mechanics Conference Australia, 2007.
[21] McMasters, J. H. and Henderson, M. L., Low-speed single-element airfoil synthesis, Annual Review of Fluid Mechanics, Vol. 15, pp.223-232, 1983.
[22] Fuglsang P. and Back, C., Development of the wind turbine airfoils, Wind Energy, Vol. 7, pp. 145-162, 2004
[23] Tangler, J. L., Insight into wind turbine stall and post-stall aerodynamics, Wind energy, Vol. 7, pp. 247-260, 2004.
[24] Kishinami, K., Taniguchi, H., Suzuki, J., Ibano, H., Takashi, K. and Turuhami M., Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine, Renewable Energy, Vol. 30, pp. 2089-2100, 2005.
[25] Lanzafame, R. and Messina, M., Fluid dynamics wind turbine design: critical analysis, optimization and application of BEM theory, Renewable energy Vol. 21, pp. 2291-2305, 2007.
[26] Eggleston, D. M. and Stoddard, F. S., Wind turbine engineering design, New York: Van Nostrand Company; 1987.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top