跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昶斌
研究生(外文):Chang-Bin Huang
論文名稱:無閥式雙微型幫浦系統之效率分析
論文名稱(外文):Efficiency Analysis of Valve-less Dual Micropump System
指導教授:王安邦王安邦引用關係
指導教授(外文):An-Bang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:雙微型幫浦串聯
外文關鍵詞:Dual Micropumpseries
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用壓克力為基材來製作無閥式微幫浦,而此幫浦是利
用壓電片上下振動作為流體的驅動來源,並利用設計的漸張管/漸縮
管原理來得到所需的流量。在本研究中對於漸張管/漸縮管的長度以
及開口角度不同的單一振動腔之微幫浦來作一比較。發現在相同開口
角度下,長度的長短所得到最大流量值是相同的,但是長度較短的微
幫浦其趨勢較為平緩,亦即在最大流量值附近敏感度較低,因此性能
較好。而在開口角度方面,則是比較4.6°與9.8°,發現開口角度在
9.8°時性能較好,亦即所得到的最大流量值較高。此外在本研究中也
針對串聯式雙微幫浦作流量的分析,發現固定兩個振動腔中的一個,
只驅動另外一個振動腔,都可以達到流量提升的效果;而且也比較同
相位與不同相位差對於流量的影響,發現在相位差為90°時所得到的
最大流量值最大且為單一振動腔微幫浦的三倍。
This study is to fabricate a valveless micropump by using PMMA
materials, and the micropump uses piezoelectric disk to drive the fulid,
and it uses diffuser/nozzle principle to get the flow rate. In diffuser/nozzle
design, the micropump compares different length and angle with the other
one. It may be seen that on the same angle the maximum flow rates of the
different length single micropumps are the same, but the trend of the
shorter length is smoother and sensitivity is lower near the maximum
flow rate. On the different angles of 4.6°and 9.8°, it could be seen that
the performance and the maximum flow rate of 9.8° is better. In addition,
in the study it also analyse flow rate of the dual micropump in series. It
could be seen that fixing one chamber and driving the other one is

promoting the flow rate. it also fabricate dual chamber micropump in
series to compare the flow rate with single chamber micropump in phase
and in anti-phase, and it could be seen that at the phase angle of 90°, a
three-fold increase of flow rate is relative to that of a sinle chamber
operation.
摘要......................................................................................................... i
ABSTRACT............................................................................................ ii
目錄......................................................................................................... iii
圖目錄......................................................................................................v
表目錄.....................................................................................................ix
符號說明.................................................................................................x
第一章 緒論
1-1 前言與研究動機.........................................................................1
1-2 文獻回顧.....................................................................................3
1-3 研究目的.....................................................................................6

第二章 無閥式微幫浦原理與設計
2-1 無閥式微幫浦之基本原理.........................................................7
2-2 無閥式微幫浦流量之理論分析.................................................9
2-3 Diffuser之設計理論....................................................................13

第三章 無閥式微幫浦之製作
3-1 流道之製作.................................................................................14
3-2 熱壓印機台.................................................................................16
3-3 壓電片的選取與黏合.................................................................17

第四章 實驗儀器之架設與參數之設計
4-1波形產生器與放大器...................................................................18
4-2 實驗儀器之架設.........................................................................19
4-3 微幫浦設計之幾何尺寸.............................................................21

第五章 實驗結果與討論
5-1 單一振動腔之微幫浦的比較(BC1)...........................................22
5-2 單一振動腔之微幫浦的比較(BC2)......................................... .25
5-3 串聯式雙振動腔之微幫浦的比較(BC1)...................................27
5-4 串聯式雙振動腔之微幫浦的比較(BC2)...................................29

第六章 結論與未來展望
6-1 結論.............................................................................................31
6-2 未來展望.....................................................................................33

參考文獻..................................................................................................34
A. Olsson, G. Stemme and E. Stemme, “A Valve-less Planar
Fluid Pump with Two Pump Chambers”, Sensors and Actuators
A, pp46-47,1995.

A. Olsson , G. Stemme, and E. Stemme, “Diffuser-element
Design Investigation for Valve-less Pumps”, Sensors and
Actuators A., vol. 57, pp. 137-143, 1996.

A. Olsson ,G. Stemme and E. Stemme, “Micromachined
Flat-Walled Valueless Diffuser Pumps”, Journal of
Microelectromechanical Systems, Vol.6, No2, June 1997.

A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman and
G. Stemme, “Valve-less Diffuser Micropumps Fabricated Using
Thermoplasticreplication”, Sensors and Actuators A., vol.64, pp.63-68,
1998.

A. Olsson, G. Stemme, and E. Stemme, “A Numerical Design
Study of the Valveless Diffuser Pump Using a Lumped-mass
Model”, Journal of Micromechanics and Microengineering, vol.9,
pp. 34-44, 1999.

E. Stemme and G. Stemme, “A Valve-less Diffuser/Nozzle based
Fluid Pump”, Sensor and Actuators A,39, pp159-167,1993.

F. M. White, Fluid Mechanics. New York: McGraw-Hill, 1986.

J. Tsai and L. Lin , “A Thermal-Bubble-Actuated Micronozzle-Diffuser
Pump”, Journal of Microelectromechanical Systems, vol. 11, pp.665-671,
2002.

K. S. Yang, I. Y. Chen, and C. C. Wang, “Performance of Nozzle/Diffuser
Micro-pump Subject to Parallel and Series Combinations”, chem. Eng.
Technol. 2006, 29, No. 6

梁聖昌,“勞倫茲力驅動之擴散幫浦”,台灣大學機械工程研究所,91碩士論文.

李俊賢,“可攜式無閥壓電微幫浦之設計製作與應用”,台灣大學應用力學研究所,92碩士論文.

涂智凱,“新式無閥門微幫浦之開發”,台灣大學應用力學研究所,93碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top