跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳慧
研究生(外文):Jia-Hui chen
論文名稱:利用高果糖誘發大鼠代謝症候群模式探討複方食材對代謝症候群的影響
論文名稱(外文):Investigating the Effects of Combinatorial Foods on Metabolic Syndrome in A Fructose – Fed Rat Model
指導教授:吳亮宜
指導教授(外文):Liang-Yi Wu
學位類別:碩士
校院名稱:中原大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:123
中文關鍵詞:代謝症候群高果糖複方食材
外文關鍵詞:metabolic syndromehigh fructosecombinatorial food
相關次數:
  • 被引用被引用:1
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
代謝症候群是由數種代謝異常結合於同一人身上的疾病。研究指出,代謝症候群的患者,得到糖尿病、心臟病的機率與死亡率會大幅增加。故本實驗將利用複方食材,評估其改善代謝症候群之功效。
實驗設計將雄性SD大鼠分成四組,分別是空白組 (B):餵飼50%玉米澱粉和10%蔗糖混和飼料;控制組 (C):餵飼60%高果糖飼料;食材處理組1 (T1):餵飼高果糖飼料,並添加紅麴、大豆、綠藻、苦瓜及甘草複方。食材處理組2 (T2):同樣餵飼高果糖飼料,並添加兒茶素、豆豉、鰹魚及綠藻複方。實驗持續進行13週。實驗期間分析血壓、禁食血漿血糖、三酸甘油酯 (TG)、總膽固醇 (TC)、高密度脂蛋白膽固醇 (HDL-C)、低密度脂蛋白膽固醇 (LDL-C) 及與胰島素訊息傳遞相關蛋白之磷酸化活性表現量。實驗期間並進行口服葡萄糖耐受性測試,觀察大鼠胰島素敏感性之變化。
實驗結果顯示,C組之血壓、TC、TG、LDL-C濃度、肝臟總膽醇濃度皆顯著較B組高。而胰島素敏感性與高密度脂蛋白膽固醇比例 (HDL-C/TC) 則顯著低於 B 組,代表C組產生了代謝症候群之現象。探討其機制,C組之insulin receptor (IR) 及Akt的磷酸化量和Glucose transportor 4 (Glut 4) 表現量與B組比較皆有下降的趨勢。相較於C組,T1組具有較高的HDL-C/TC和胰島素敏感性,較低的血壓、TG與腹部脂肪。而其IR、insulin receptor substrate-1 (IRS-1)、Akt及Glut 4之表現量和Akt活化量與C組比較皆有上升的趨勢。T2組則有較高的HDL-C/TC、胰島素敏感性,與較低的血壓、三酸甘油酯和總膽固醇濃。且其IR、Akt及Glut 4之表現量和Akt活化量與C組比較亦皆有上升的趨勢。顯示本實驗使用之複方食材可有效改善代謝症候群之症狀。
另本實驗中所使用的空白組飼料非一般常用的 chow diet,因此,我們另設計一實驗比較兩種飼料的大鼠的影響。實驗設計將雄性SD大鼠分成兩組,分別是實驗組 (Co):餵飼餵飼50%玉米澱粉和10%蔗糖混和飼料;對照組 (Ch):餵食chow diet。實驗結果顯示,Co組之腹部脂肪、TC、TG及胰島素濃度皆顯著較Ch組高。推測原因可能與微量礦物質、脂質、脂肪酸種類及蔗糖有關。
The metabolic syndrome is a common metabolic disorder on the person body. The previous study showed that the presence of the syndrome predicted increased cardiovascular disease and coronary heart disease mortality. The objective of this study was to evaluate the effects of the supplementation of the combinatorial health food on metabolic syndrome in a fructose-fed rat model.
The male SD rats were divided into four group: blank group (B), fed with 50% corn starch + 10% sucrose diet ; control group (C), fed with high fructose diet alone ; treatment group 1 (T1), fed with high fructose diet plus red yeast rice, soybean, bitter melon, licorice and green algae; treatment group 2 (T2), fed with high fructose diet plus green algae, katsuobushi oligopeptide, catechin, and touchi extract. The study lasted for 13 weeks. Biochemical parameters related to blood pressure, fasting plasma glucose, insulin, triglyceride, total cholesterol, abdominal fat mass and the phosphorylation activity and expression of insulin signaling pathway related proteins were measured, and an oral glucose tolerance test (OGTT) was performed in this study.
The data shown that group C had significant increase in plasma triglyceride, cholesterol, LDL-C, hepatic total cholesterol and systolic blood pressure. Insulin sensitivity and HDL/TC ratio were decrease as compared to group B. Further evaluated the possible mechanism of high fructose diet induced metabolic defects, we found that the rats showed decreased phosphorylation activities of insulin receptor (IR) and Akt and total content of glucose transporter IV (Glut 4).
Compairing with group C, group T1 had higher HDL-C/TC ratio, and insulin sensitivity, and lower systolic blood pressure, triglyceride and abdominal fat mass. And the expressions of IR, insulin receptor substrates-1 (IRS-1), Akt and Glut 4 and phosphorylation activities of Akt were raised in T1 group.
Group T2 had lower systolic blood pressure, triglyceride and TC level as compared to group C. And the decreased insulin sensitivity was also ameliorated in group T2, which might result from the increased expressure of IR, Akt and Glut 4 and the increased phosphorylation activity of Akt.
The result showed that the combinatorial health food we used in this study may improve of metabolic syndrome effectively. Furthermore, the basal diet we used in the above was not the chow diet in common use. We designed anther study to investigate the influence of two diets on rats.
The male SD rats were divided into two group: experimental group (Co), fed with 50% corn starch + 10% sucrose diet ; control group (Ch), fed chow diet alone. The data shown that group Co had significant increase in plasma triglyceride, cholesterol, insulin, insulin and abdominal mass fat. And we suggested these phenomena induced by group Co may attribute to the contents of micro-mineral, sucrose and lipid.
目次
摘要.............................................I
ABSTRACT.......................................III
誌謝............................................Ⅴ
目錄............................................VI
表次............................................IX
圖次............................................Ⅹ
第壹章 前言.....................................1
第貳章 文獻回顧 .................................2
第一節 代謝症候群................................2
一、代謝症候群簡介 .................................2
二、代謝症候群的定義與診斷標準......................2
第二節 代謝症候群之致病機轉.........................6
一、胰島素阻抗....................................6
二、發炎因子......................................8
三、氧化壓力......................................9
四、肥胖.........................................9
第三節 代謝症候群的治療...........................10
一、生活型態.....................................10
二、藥物治療.....................................13
第五節 高果糖動物模式.............................16
一、果糖的影響...................................16
二、果糖代謝.....................................17
三、果糖與代謝症候群的產生 .......................17
第六節 食材介紹..................................18
一、甘草 .......................................18
二、紅麴 .......................................19
三、苦瓜 .......................................19
四、大豆 .......................................20
五、綠藻 .......................................21
五、兒茶素......................................21
六、豆豉 .......................................22
七、鰹魚 .......................................22
第参章 研究目的與實驗架構 .......................24
第一節 研究目的..................................24
第二節 實驗架構..................................26
第肆章 材料與方法..............................28
第一節 實驗材料..................................28
一、儀器設備.....................................28
二、實驗食材.....................................29
三、動物飼料.....................................29
四、化學藥品.....................................30
五、溶劑.........................................31
六、酵素套組.....................................32
七、抗體........................................32
八、其他........................................33
第二節 實驗方法..................................33
一、實驗動物.....................................33
二、動物分組與飼養 ...............................33
三、食材劑量選擇方法與詳細配方成分..................35
四、血壓之測量...................................42
五、採集禁食狀態之血液............................42
七、動物犧牲與檢體之收集與分析.....................45
第三節 統計分析..................................53
第伍章 結果....................................54
實驗Ⅰ 食材改善代謝症候群試驗......................54
一、生長狀況.....................................54
二、飼養期之血壓變化..............................54
三、飼養期禁食狀態血漿分析.........................54
四、口服葡萄糖耐受性試驗...........................56
五、組織臟器重量..................................59
六、犧牲後禁食血液生化指標.........................59
七、肝臟三酸甘油酯、膽固醇及TBARS分析..............60
八、脂肪組織胰島素訊息傳遞相關蛋白質表現量及磷酸化程度...........60
實驗Ⅱ 空白組比較試驗.............................62
一、生長狀況.....................................62
二、飼養期之血壓變化..............................62
三、飼養期禁食狀態血漿分析.........................62
四、口服葡萄糖耐受性試驗...........................63
五、組織臟器重量..................................63
六、犧牲後禁食血液生化指標.........................64
七、肝臟三酸甘油酯及膽固醇分析.....................64
第陸章 討論....................................65
實驗Ⅰ食材改善代謝症候群試驗.......................65
一、生長狀態及組織臟器變化.........................65
二、胰島素敏感性與血糖............................66
三、血脂變化.....................................67
四、血壓變化.....................................68
五、胰島素訊息傳遞路徑相關蛋白表現量及活化量.........69
實驗Ⅱ 空白組比較試驗.............................70
第柒章 結論....................................71
第八章 參考文獻................................101



表次
表2-1、不同代謝症候群診斷標準之比較........................................................5
表2-2、代謝症候群患者生活型態的改變 .....................................................12
表4-1、各組飼料組成成份 .............................................................................37
表4-2、50%玉米澱粉飼料之組成...................................................................38
表4-3、Rodent Chow diet的組成.................................................................... 39
表4-4、Rodent Chow diet與 Harlan Teklad diet之礦物質組成....................40
表4-5、Rodent Chow diet與 Harlan Teklad diet之油質組成........................41
表5-1、大鼠於第4、8和12週時進行口服葡萄糖耐受性試驗血漿葡萄
糖和胰島素濃度曲線下面積扣除基礎值之變化量.........................93
表5-2、大鼠飲食處理13週後之組織臟器重.................................................94
表5-3、大鼠飲食處理13週後之禁食血漿葡萄糖、胰島素、三酸甘油酯
、膽固醇、高密度脂蛋白膽固醇、低密度脂蛋白膽固醇..………….95
表5-4、大鼠飲食處理13週後之肝臟三酸甘油酯、膽固醇與TBARS含
量.........................................................................................................96
表5-5、大鼠於第12週時進行口服葡萄糖耐受性試驗血漿葡萄糖和胰島
素濃度曲線下面積變化量.................................................................97
表5-6、大鼠飲食處理13週後之組織臟器重量.............................................98
表5-7、大鼠飲食處理13週後之禁食血漿葡萄糖、胰島素、三酸甘油酯
、膽固醇、高密度脂蛋白膽固醇與低密度脂蛋白膽固醇濃度.........99
表5-8、大鼠飲食處理13週後之肝臟三酸甘油酯與膽固醇含量…….......100



圖次
圖 2-1、胰島素訊息傳遞路徑…………………………………………………7
圖 2-2、PPARs之表現 ………………………………………………………16
圖 2-3、果糖在肝臟中的利用…………………………………………………17
圖5-1、大鼠飲食處理12週期間體重變化之情形………………………… 72
圖5-2、大鼠飲食處理12週期間(A)收縮壓(B)舒張壓變化之情形..………73
圖5-3、大鼠飲食處理12週期間禁食血漿葡萄糖變化之情形…………… 74
圖5-4、大鼠飲食處理12週期間禁食血漿胰島素變化之情形…………… 75
圖5-5、大鼠飲食處理12週期間禁食血漿三酸甘油酯變化之情形……… 76
圖5-6、大鼠飲食處理12週期間禁食血漿膽固醇變化之情形…………… 77
圖5-7、大鼠飲食處理12週期間禁食血漿(A)高密度脂蛋白膽固醇(B)
HDL - C/TC變化之情形 ……………………………………………78
圖5-8、實驗4週後大鼠進行口服葡萄糖耐受性試驗血漿葡萄糖 (A)及
胰島素濃度 (B) 之變化 ………………..……………………...… 79
圖5-9、實驗8週後大鼠進行口服葡萄糖耐受性試驗血漿葡萄糖 (A)及
胰島素濃度 (B)之變化 ……………….….…………………….… 80
圖5-10、實驗12週後大鼠進行口服葡萄糖耐受性試驗血漿葡萄糖 (A)
及胰島素濃度 (B) 之變化 ………………..…………………...… 81
圖5-11、大鼠飲食處理13週後大鼠脂肪細胞中胰島素訊息傳遞相關蛋
白質表現量.........................................................................................82
圖5-12、大鼠飲食處理13週後脂肪細胞中訊息傳遞相關蛋白質表現量
之定量結果.........................................................................................83
圖5-13、大鼠飲食處理13週後脂肪細胞中訊息傳遞相關蛋白質活化量之定量結果.................................................................................................84
圖5-14、大鼠飲食處理12週期間體重變化之情形 ……………………… 85
圖5-15、大鼠飲食處理12週期間血壓變化之情形 ……………………… 86
圖5-16、大鼠飲食處理12週期間禁食血漿葡萄糖變化之情形………...…87
圖5-17、大鼠飲食處理12週期間禁食血漿胰島素變化之情形………...…88
圖5-18、大鼠飲食處理12週期間禁食血漿三酸甘油酯變化之情形…...…89
圖5-19、大鼠飲食處理12週期間禁食血漿膽固醇變化之情形………...…90
圖5-20、大鼠飲食處理12週期間禁食血漿(A)高密度脂蛋白膽固醇(B) HDL-C/TC變化之情形……………………..………………….… 91
圖5-21、實驗12週後大鼠進行口服葡萄糖耐受性試驗血漿葡萄糖 (A)
及胰島素濃度 (B) 之變化...………………..…………………… 92
Abate N: Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J Diabetes Complications 2000; 14: 154-174.
Abate N, Garg A, Peshock RM, Gundersen SJ, Huet AB, Grundy SM: Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes 1996; 45: 1684-1693.
Alberti KG, Zimmet P, Shaw J: The metabolic syndrome - a new worldwide definition. Lancet 2005; 366: 1059-1062.
Anderson KM, Wilson PWF, Garrison RJ, Castelli WP: Longitudinal and secular trends in lipoprotein cholesterol measurements in a general population sample: The Framingham offspring study. Atherosclerosis 1987; 68: 59-66.
Aoki F, Honda S, Kishida H, Kitano M, Arai N, Tanaka H, Yokota S, Nakagawa K, Asakura T, Nakai Y, Mae T: Suppression by Licorice Flavonoids of Abdominal Fat Accumulation and Body Weight Gain in High-Fat Diet-Induced Obese C57BL/6J Mice. Biosci Biotechnol Biochem 2007; 71: 206-214.
Arner P: Obesity – a genetic disease of adipose tissue? British J of Nutrition 2000; 83: 9-16.
Arner P: Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev 2002; 18: 5-9.
Barros CM, Lessa RQ, Grechi MP: Substitution of drinking water by fructose solution induces hyperinsulinemia and hyperglycemia in hamsters. Clinics 2007; 62: 327-334.
Bart S, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC: Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation 1998; 98: 2088-2093.
Basciano H, Federico L, Adeli K: Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism 2005; 1186: 1743-7075.
Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M: PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 2006; 34: 1341-1346.
Bussiere L, Mazur A, Gueux E, Nowacki W, Rayssiguier.Triglyceride-rich lipoproteins from magnesium-deficient rats are more susceptible to oxidation by cells and promote proliferation of cultured vascular smooth muscle cells. Magnesium Res 1995; 8:151-157
Cameron AJ, Shaw JE, Zimmet PZ: The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004; 33: 351–375.
Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA: Cellular mechanisms of insulin resistance in rats with fructose- induced hypertension. Am J Hypertens 2003; 16: 973-978.
Cefalu WT, Hu FB: Role of Chromium in human health and in diabetes, Diabetes care 2004; 27:2741-2751.
Chao CY, Huang CJ: Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci 2004; 10: 782-791.
Cherng JY, Shih MF: Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment. Life Sciences 2005; 76:3001-3013.
Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B: PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53-58.
Coulston A, Greenfield M, Kraemer F, Tobey T, Reaven G: Effect of source of dietary carbohydrate on plasma glucose and insulin responses to test meals in normal subjects. Am. I Clin. Nuir 1980; 33: 1279-1282.
Crespy V, Williamson G: A Review of the Health Effects of Green Tea Catechins in In Vivo Animal Models. J Nutr 2004; 134: 3431-3440.
Dandona P, Aljada A, Chaudhuri A: Metabolic syndrome : a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005; 111:1448-1454.
David BB: Peroxisome proliferator - activated receptors in the cardiovascular system . British Journal of Pharmacology 2000; 129: 823 – 834.
Despres JP: Is visceral obesity the cause of the metabolic syndrome? Ann Med 2006; 38: 52-63.
Despres JP, Lemieux I: Abdominal obesity and metabolic syndrome. Nature 2006; 444: 1038-1088.
Elliott SS, Keim LN, Stern SJ, Teff K, Havel PJ: Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002; 76: 911-922.
Escher P, Wahli W: Peroxisome proliferator activated receptor: insight into multiple cellular functions. Mutat Res 2000; 448: 121-138.
Evans JL, Goldfine ID, Maddux BA, Grodsky GM: Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction Diabetes 2003; 52: 1-8.
Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2005; 285: 2486-2497.
Ferrannini E, Natali A, Bell P: Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest 1997; 100: 1166-1173.
Fujita H, Yamagami H: Fermented soybean-derived Touchi-extract with anti-diabetic effect via α - glucosidase inhibitory action in a long-term administration study with KKAy mice. Life Sciences 2001; 70: 219-227.
Fujita H, Yamagami H, Ohshima K: Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and inborderline and mildly hypertensive subjects. Nutrition Research 2001; 21: 1149-1158.
Fujita H, Yamagami T Ohshima K: Fermented Soybean–Derived Water- Soluble Touchi Extract Inhibits a- Glucosidase and Is Antiglycemic in Rats and Humans after Single Oral Treatments. J Nutr 2001; 131: 1211-1213.
Fujita S, Hemming AW, Fujikawa T, Reed AI, Howard RJ, Langham MR, Kays DW, Froelich MA, Kushihata F, Watanabe J: Expanded efficacy and indication of extracorporeal membrane oxygenation for preoperative pulmonary bleeding on pediatric cadaveric orthotopic liver transplantation. Transplantation 2005; 79: 1637.
George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC: A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004; 304: 1325-1358.
Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T: Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 2007; 293: 1256-1261.
Green S: PPAR: a mediator of peroxisome proliferator action. Mutat Res 1995; 333: 101-109.
Handberg A, Vaag A, Vinten J, Nielsen BH: Decreased tyrosine kinase activity in partially purified insulin receptors from muscle of young, non-obese first degree relatives of patients with type 2 ( non – insulin – dependent ) diabetes mellitus. Diabetologia 1993; 36: 668-674.
Henin N, Vincet MF, Gruber HE, Van den Berghe G: Inhibition of fatty acid and cholesterol synthase by stimulation of AMP-activated protein kinase. FASEB J 1995; 9: 541-546.
Henryk D, Mario L, Alexandra K, Gert B, Karl S, Verena S. Characteristics of Catechin - and Theaflavin - Mediated Cardioprotection. Exp Bio Med. 2008 ; 233 : 427 – 433.
Herrero M, Cifuentes A, Ibanez E: Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plant, food - by - products, algae and microalgae A review. Food chemistry 2006; 98: 136-148.
Hsu HC, Lee YT , Chen MF: Effect of n-3 fatty acids on the composition and binding properties of lipoproteins in hypertriglyceridemic patients. Am J Clin Nutr 2000; 71: 28-35.
Huang HN, Hua YY, Bao GR, Xie LH: The Quantification of Monacolin K in Some Red Yeast Rice from Fujian Province and the Comparison of the Other Product. Chem. Pharm. Bull 2006; 54: 687-689.
Hyakukoku M, Higashiura K, Ura N, Murakami H, Yamaguchi K, Wang L, Furuhashi M, Togashi N, Shimamoto K. Tissue-specific impairment of insulin signaling in vasculature and skeletal muscle of fructose-fed rats. Hypertens Res. 2003; 26(2):169-176.
Isomaa B: A major health hazard: the metabolic syndrome. Life Sci 2003; 73: 2395-2411.
Jarvinen YH: Thiazolidinediones. N Engl J Med 2004; 351: 1106-1118.
Jenkins DJ, Kendall CW, Augustin LS, Vuksan V: High-complex carbohydrate or lente carbohydrate foods? Am J Med 2002; 113:30-37.
Jeroen PH, Wijk V, Eelco JP, Edwin P, Ton J: Thiazolidinediones and Blood Lipids in Type 2 Diabetes. Arterioscler Thromb Vasc Biol 2003; 23: 1744-1749.
Kanarek RB, Marks-Kaufman R: Developmental aspects of sucrose - induced obesity in rats. Physiol Behav 1979; 23: 881-885.
Kao YH, Chang HH, Lee MJ, and Chen CL: Tea, obesity, and diabetes. Mol Nutr Food Res 2006; 50: 188-210.
Kavanagh K, Jones KL, Zhang L, Flynn DM, Shadoan MK, Wagner JD. High isoflavone soy diet increases insulin secretion without decreasing insulin sensitivity in premenopausal nonhuman primates. Nutr Res. 2008 ; 28 : 368 -76.
Kim, H. K., Choi, S. & Choi, H: Suppression of hepatic fatty acid synthase by feeding α-linolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J. Nutr. Biochem 2004; 15: 485-492.
Knopp RH: Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498-511.
Kouno K, Hirano SI, Kuboki H, Kasai M, Hatae K: Effects of Dried Bonito (Katsuobushi) and Captopril, an Angiotensin I-Converting Enzyme Inhibitor, on Rat Isolated Aorta: A Possible Mechanism of Antihypertensive Action. Biosci Biotechnol Biochem 2005; 69: 911-915.
Kraegen EW, Clark PW, Jenkins A, Daley EA, Chisholm DJ, Storlien LH: Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 1991; 40: 1397-1403.
Kylin E: Studien ueber das Hypertonie- Hyperglykamie- Hyperurika miesyndrom. Zentralblatt fuer Innere Medizin 1923; 44:105-127.
Lalloyer F, Vandewalle B, Percevault F: PPAR alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006; 55: 1605-1613.
Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH: Improvement in glucose tolerance due to Momordica charantia (karela). British medicl journal 1981; 282: 1823-1824.
Lee CJ, Tsai TU , Wang JJ , Pan TM: In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl Microbiol Biotechnol 2006; 70: 533-540.
Lee K: Transactivation of peroxisome proliferator-activated receptor α by green tea extracts. J Vet Sci 2004; 5: 325-330.
Lefebvre AM, Peinado OJ, Leitersdorf I, Briggs RM, Paterniti RJ, Fruchart JC, Fievet C, Auwerx J, Staels B: Regulation of Lipoprotein Metabolism by Thiazolidinediones Occurs through a Distinct but Complementary Mechanism Relative to Fibrates. Arterioscler Thromb Vasc Biol 1997; 17: 1756-1764.
Levenson JW, Skerrett PJ, Gaziano JM: Reducing the global burden of cardiovascular disease: the role of risk factors. Prev Cardio 2002; 5: 188-199.
Li P, Koike T, Qin B, Kubota M, Kawata Y, Jia Y J, Oshida Y: A high-fructose diet impairs Akt and PKCzeta phosphorylation and GLUT4 translocation in rat skeletal muscle. Hormone and Metabolic Research 2008 ; 40 : 528 -532.
Libby P: Molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844-2850.
Lillian F, Lien JR, Guyton: Metabolic syndrome. Dermatologic Therapy 2008; 21: 362-375.
Litherland GJ, Hajduch E, Gould GW, Hundal HS: Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Mol Cell Biochem 2004; 261: 23-33.
Malik S, Wong ND, Franklin SS: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 2004; 110: 1245-1250.
Manuel T. Velasquez, Sam J: Bhathena Role of Dietary Soy Protein in Obesity. Int J Med Sci 2007; 4: 72-82.
Marette A: Mediators of cytokine-induced insulin resistance in obesity and other inflammatory setting. Curr Opin Clin Nutr Metab Care 2002; 5: 377-383.
Matsumoto N, Ishigaki F, Ishigaki A, Iwashina H, Hara Y: Reduction of blood glucose levels by tea catechin. Biosci Biotechnol Biochem 1993; 57, 525-527.
Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, Fruchart NJ, Glineur C, Staels B: Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I. J Clin Invest 2001; 107: 1423-1432 .
Miura T, Itoh C, Iwamoto N, Kato M, Kawai M, Park SR, Suzuki I: Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci 2001; 47: 340-344.
Murase T, Nagasawa A , Suzuki J , Hase T, Tokimitsu I: Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002; 26: 1459-1464
Nerurkar PV, Lee YK, Motosue M, Adeli K, Nerurkar VR. Momordica charantia (bitter melon) reduces plasma apolipoprotein B-100 and increases hepatic insulin receptor substrate and phosphoinositide-3 kinase interactions. Br JNutr. 2008; 100 : 751-759.
Orsolya M, William JB, Steger RW, Peluso RM, Winters TA, Shay N: Soy Isoflavones Exert Antidiabetic and Hypolipidemic Effects through the PPAR Pathways in Obese Zucker Rats and Murine RAW 264.7 Cells. J Nutr 2003; 133: 1238-1243.
Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim JA, Quon MJ, Montagnani M: EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 2007; 292: 1378-1387.
Reaven GM: Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
Remirez D, Fernandez V, Tapia G, Gonzalez R and Videla LA: Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and kupffer cell functioning. Inflamm Res 2002.; 51: 351-356.
Roche HM: Dietary lipids and gene expression. Biochem Soc Trans 2004.; 32: 999-1002.
Rosen OM: Structure and function of insulin receptors. Diabetes 1989; 38: 1508-1511.
Rosen P, Nawroth PP, King G, Moller W, Trischler HJ, Packer L: The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCOMCBN, the American Diabetes Association, and the German Diabetes Society. Diabetes Metab Res Rev 2001; 17: 189-212.
Rosenson RS, Tangney CC: Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998; 279: 1643-1650.
Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809.
Ross R: Cellular and molecular studies of atherogenesis. Atherosclerosis 1997; 131: 3-4.
Saltiel AR: The molecular and physiological basis of insulin resistance: emerging implications for metabolic and cardiovascular diseases. J Clin Invest 2000; 106: 163-164.
Scott CL: Diagnosis, prevention, and intervention for the metabolic syndrome. Am J cardiol 2003; 92: 35-42.
Shih CC, Lin CH, Lin WL, Wu JB. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol. 2009:123:82-90.
Shinozaki K, Ayajiki K, Kashiwagi A, Masada M, Okamura T: Malfunction of vascular control in lifestyle-related diseases: mechanisms underlying endothelial dysfunction in the insulin-resistance state. J Pharmacol Sci 2004; 96: 401-405.
Shiuchi T, Cui TX, Wu L, Nakagami H, Matsubara YT, Iwai M: Masatsugu Horiuchi ACE Inhibitor Improves Insulin Resistance in Diabetic Mouse Via Bradykinin and NO. Hypertension 2002; 40: 329-334.
Sicree R, Shaw JE, Zimmet P: The global burden of diabetes In Diabetes Altas 2nd edition. Edited by D Gan. Brussels, International Diabetes Federation 2003.
Tenenbaum A, Fisman EZ, Boyko V: Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Arch Intern Med 2006; 166: 737-41.
Tomonori N, Yumiko K, Satoko S, Shinichi M, Tadashi H, Yukitaka T, Ichiro T: Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 2005; 81: 122-129.
Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, Uryu K, Hada T, Takeda E: Extracts of Momordica charantia Suppress Postprandial Hyperglycemia in Rats. J Nutr Sci 2007; 53: 482-488.
Ueda M, Nishiumi S, Nagayasu H, Fukuda I, Yoshida K, Ashida H. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun.2008. 377:286-290.
Ueno M, Bezerra RM, Silva MS, Tavares DQ, Carvalho CR, Saad MJ: A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats. Braz J Med Biol Res 2000; 33: 1421-1427.
Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussen L, Liao YC, Tsubokawa M: Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985; 313: 756-761.
Vague J: Sexual differentiation, a factor affecting the forms of obesity. Presse Med 1947; 30: 339-340.
Vaughan CJ, Murphy MB, Buckley BM: Statins do more than just lower cholesterol. Lancet 1996; 348: 1079-1082.
Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG: Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med 2001; 135: 1019-1028.
Wadley GD, Tunstall RJ, Sanigorski A, Collier GR, Hargraves M: Cameron-Smith D. Differential effects of exercise on insulin-signaling gene expression in human skeletal muscle. J Appl Physiol 2001; 90: 436-440.
Waltner ME, Wang XL, Law BK, Hall RK, Nawano M , Granner DK . Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem. 2002; 277: 34933 – 34940.
Weisberg SP, McCann D, Desai M: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808.
Yajnik CS, Smith RF, Hockaday TDR, Ward NI. Fast plasma magnesium concentrations and glucose disposal in diabetics. Br Med J 1984; 288 :1032-1034.
Zierath JR, Björnholm M: Insulin signal transduction in human skeletal muscle : identifying the defects in Type II diabetes. Biochem Soc Trans 2005; 33: 354-357.
Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 200
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊