跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓怡潔
研究生(外文):I-Chieh Cho
論文名稱:利用閥值技術移除腦血管區域以增進腦血流動力學參數之準確性
論文名稱(外文):Through the thresholding techniques to remove vessel pixels and provide more accurate hemodynamic parameters
指導教授:高怡宣高怡宣引用關係
指導教授(外文):Yi-Hsuan Kao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:腦血流灌注磁振影像動脈輸入函數血管移除腦血流體積腦血流流量
外文關鍵詞:brain perfusion MRIarterial input functionvessel removalcerebral blood volumecerebral blood flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
目的:
本實驗使用閥值技術,辨識出磁振影像上血管或鄰近血管而受影響的區域,將之移除,另外,也使用篩選標準找出正常腦組織遮罩,對照文獻上絕對值,以校正參數將相對腦血流體積與相對腦血流流量轉換成絕對值。藉此改善部份體積效應的影響,增進腦血流體積與腦血流流量定量準確性。
材料與方法:
將腦灌流磁振影像進行獨立成份分析法,得到動脈成份為主的遮罩,找出動脈之平均濃度時間曲線,作為動脈輸入函數,計算腦血流體積與腦血流流量相對值。先將腦脊髓液與背景移除,再依據血管或受血管磁化率影響的區域有較高的腦血流體積與腦血流流量數值的特性,使用閥值技術,辨識相對腦血流體積與相對腦血流流量影像上血管或鄰近血管而受影響的區域。畫出相對腦血流體積與相對腦血流流量之直方圖,計算兩直方圖的中位數,以兩倍中位數為閥值,將相對腦血流體積與相對腦血流流量過高的體素,視為血管並移除。將血管、腦脊髓液與背景移除後,餘留單純腦實質(灰質與白質)之腦組織影像,應用閥值技術於此腦組織峰值時間影像,找出正常腦組織遮罩,將遮罩內的相對腦血流體積與相對腦血流流量數值,利用校正參數換為絕對值,校正部份體積效應的影響。
結果:
此方法可以改善磁振造影礙於解析力,難以絕對定量之缺陷,並提供不受血管影響,單純腦白質或灰質組織腦血流體積與腦血流量參數,防止血管磁化率效應帶來高估或錯估之情形。
結論:
本研究提出移除血管的後處理技術,減少血管磁化率效應影響,並提供一個不必使用靜脈輸入函數,便可作部份體積效應校正的方法,增進臨床上腦血流動力參數之定量評估。

關鍵字:腦血流灌注磁振影像、動脈輸入函數、血管移除、腦血流體積、腦血流流量

Purpose:A thresholding technique was applied to the relative cerebral blood volume (CBV) and relative cerebral blood flow (CBF) images for removing voxels either containing vessels or near vessels. Scaling factors were calculated for converting relative CBV and relative CBF values to absolute values. Quantitative measurements of CBV and CBF on brain parenchyma were improved.
Material and methods:The independent component analysis technique was utilized to segment the arterial region on brain perfusion MRI for normal subjects and patients with stenosis, and found the arterial input function (AIF) for following calculation. Because voxels containing or near vessels had much higher relative CBV and relative CBF values than voxels containing only brain parenchyma, a thresholding technique can be applied to relative CBV and relative CBF images for segmenting vessel voxels. The relative CBV and relative CBF histograms were plotted for voxels included in the brain mask with CSF voxels removed. The median values of the two histograms were calculated. The thresholds were set at twice of the median values of the relative CBV and relative CBF histograms. Voxels with relative CBV or relative CBF values higher than the thresholds were classified as vessel voxels. These vessel voxels were removed from the brain mask. The thresholding technique was also applied to TTP images for finding normal brain parenchyma. The averaged relative CBV and relative CBF for the voxels segmented as normal brain parenchyma voxels were calculated for finding scaling factors to convert the relative CBV and relative CBF images into absolute CBV and CBF image, and correct the partial volume effect.
Results:This method can solve the defects of absolute quantification caused by its poor resolving power in magnetic resonance imaging; moreover, CBV and CBF of white matter or gray matter were measured without magnetic susceptibility effect of the blood vessels.
Conclusion:A post-processing technique was proposed for removing voxels either containing vessels or affected by vessels. And the proposed partial volume estimation technique provides a possible alternative for achieving quantitative measurements without using venous output function correction.

Key words:brain perfusion MRI;arterial input function;vessel removal;cerebral blood volume;cerebral blood flow.

中文摘要 i
Abstract ii
目錄 iii
圖表目錄 v
第一章 緒論 1
1.1 研究背景 1
1.2 論文架構 4
第二章 對比劑灌注造影 5
2.1 磁振造影量測腦血流動力參數 7
2.2 動態磁化率對比造影 9
2.2.1 訊號變化轉換成對比劑濃度變化 10
2.2.2 動脈輸入函數 12
2.2.3 曲線特性參數 13
2.2.4 部份體積效應修正 15
2.2.5 腦血流體積 17
2.2.6 腦血流流量 18
2.2.7 穿流時間 20
第三章 實驗方法及流程 21
3.1 影像擷取 22
3.2 影像後處理 23
3.2.1 獨立成分分析法 23
3.2.2 去除空氣及頭皮組織 26
3.2.3 動脈輸入函數選擇 28
3.2.4 腦脊髓液遮罩 30
3.2.5 腦血管遮罩 31
3.2.6 部份體積效應的校正 32
3.2.7 數據分析 34
第四章 實驗結果 35
4.1 獨立成分分析結果 35
4.2 動脈輸入函數結果 37
4.3 腦脊髓液與血管移除前後之結果 38
4.4 部份體積校正結果 42
4.5 腦血流動力參數分析 50
第五章 討論與結論 56
5.1 討論 56
5.1.1 動脈輸入函數 56
5.1.2部份體積效應的校正 57
5.1.3 血管遮罩 61
5.1.4 腦血流動力參數 64
5.2 結論 66
參考文獻 67

1. Andrews BT, Dujovny M, Mirchandani HG, Ausman JI. Microsurgical anatomy of the venous drainage into the superior sagittal sinus. Neurosurgery 1989;24:514-520.
2. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981;12:723-725.
3. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 1980;137:676-686.
4. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566.
5. Buxton RB. Introduction to functional magnetic resonance imaging: principles and techniques: Cambridge Univ Pr, 2002.
6. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magnetic resonance in medicine 2000;44:466-473.
7. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19:701-735.
8. Carroll TJ, Rowley HA, Haughton VM. Automatic Calculation of the Arterial Input Function for Cerebral Perfusion Imaging with MR Imaging1. Radiology 2003;227:593-600.
9. Edelman R, Mattle H, Atkinson D, et al. Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiology 1990;176:211-220.
10. Grandin CB, Bol A, Smith AM, Michel C, Cosnard G. Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 2005;26:525-535.
11. Hyvarinen A, Hoyer PO, Inki M. Topographic independent component analysis. Neural Computation 2001;13:1527-1558.
12. Kaneko K, Kuwabara Y, Mihara F, et al. Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: A comparison with 15O-PET1. Academic radiology 2004;11:489-497.
13. Kanno I, Lassen N. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. Journal of computer assisted tomography 1979;3:71-76.
14. Kao YH, Guo WY, Wu YT, et al. Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation. Magnetic resonance in medicine 2003;49:885-894.
15. Kao YH, Mu Huo Teng M, Zheng WY, Chang FC, Chen YF. Removal of CSF pixels on brain MR perfusion images using first several images and Otsu's thresholding technique. Magnetic resonance in medicine 2010;64:743-748.
16. Knutsson L, Borjesson S, Larsson EM, et al. Absolute quantification of cerebral blood flow in normal volunteers: Correlation between Xe 133 SPECT and dynamic susceptibility contrast MRI. Journal of Magnetic Resonance Imaging 2007;26:913-920.
17. Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 2009;30:885-892.
18. Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. AJNR Am J Neuroradiol 2009;30:662-668.
19. Kudo K, Terae S, Katoh C, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol 2003;24:419-426.
20. Ladurner G, Zilkha E, Iliff D, du Boulay GH, Marshall J. Measurement of regional cerebral blood volume by computerized axial tomography. J Neurol Neurosurg Psychiatry 1976;39:152-158.
21. Lee TY, Belesky V, Kalapos P, Lee D, Hachinski V, Spence D. CT perfusion imaging in cerebral ischemia. Stroke 2005;36:1-3.
22. Lin W, Celik A, Derdeyn C, et al. Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 2001;14:659-667.
23. Lythgoe DJ, Ostergaard L, William SC, et al. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2000;18:1-11.
24. Mottet I, Quast MJ, Dewitt DS, et al. NG-nitro-L-arginine methyl ester modifies the input function measured by dynamic susceptibility contrast magnetic resonance imaging. Journal of Cerebral Blood Flow & Metabolism 1997;17:791-800.
25. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magnetic resonance in medicine 2006;55:524-531.
26. Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast enhanced MR imaging. Journal of Magnetic Resonance Imaging 2001;13:797-806.
27. Murphy BD, Fox AJ, Lee DH, et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke 2006;37:1771-1777.
28. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 1996;36:726-736.
29. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725.
30. Otsu N. A threshold selection method from gray-level histograms. Automatica 1975;11:285-296.
31. Perkio J, Aronen HJ, Kangasmaki A, et al. Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging. Magnetic resonance in medicine 2002;47:973-981.
32. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke 1985;16:361-376.
33. Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637-641.
34. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265.
35. Schlaug G, Benfield A, Baird AE, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 1999;53:1528-1537.
36. Sorensen AG, Wu O, Copen WA, et al. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 1999;212:785-792.
37. Soustiel JF, Mor N, Zaaroor M, Goldsher D. Cerebral perfusion computerized tomography: influence of reference vessels, regions of interest and interobserver variability. Neuroradiology 2006;48:670-677.
38. Stark H, Van Bree JB, de Boer AG, Jaehde U, Breimer DD. In vitro penetration of des-tyrosine1-D-phenylalanine3-beta-casomorphin across the blood-brain barrier. Peptides 1992;13:47-51.
39. Stefani MA, Schneider FL, Marrone ACH, Severino AG, Jackowski AP, Wallace MC. Anatomic variations of anterior cerebral artery cortical branches. Clinical Anatomy 2000;13:231-236.
40. Stewart G. Researches on the Circulation Time in Organs and on the Influences which affect it: Parts I-III. The Journal of Physiology 1893;15:1-89.
41. Takasawa M, Jones PS, Guadagno JV, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008;39:870-877.
42. van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485.
43. Villringer A, Dirnagl U. [Pathophysiology of cerebral ischemia]. Z Arztl Fortbild Qualitatssich 1999;93:164-168.
44. Vonken EPA, van Osch MJP, Bakker CJG, Viergever MA. Measurement of cerebral perfusion with dual echo multi slice quantitative dynamic susceptibility contrast MRI. Journal of Magnetic Resonance Imaging 1999;10:109-117.
45. Waaijer A, Van der Schaaf I, Velthuis B, et al. Reproducibility of quantitative CT brain perfusion measurements in patients with symptomatic unilateral carotid artery stenosis. American journal of neuroradiology 2007;28:927-932.
46. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 2001;11:1220-1230.
47. Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing insensitive technique for estimating flow in MR perfusion weighted imaging using singular value decomposition with a block circulant deconvolution matrix. Magnetic resonance in medicine 2003;50:164-174.
48. Ziegelitz D, Starck G, Mikkelsen IK, et al. Absolute quantification of cerebral blood flow in neurologically normal volunteers: dynamic-susceptibility contrast MRI-perfusion compared with computed tomography (CT)-perfusion. Magn Reson Med 2009;62:56-65.
49. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circulation Research 1962;10:393-407.
50. Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circulation Research 1965;16:309-321.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top