跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳振鈞
研究生(外文):Chen, Cheng-Chun
論文名稱:氣懸性污染垂直排放於下降型街谷之擴散特性風洞實驗研究
論文名稱(外文):Wind tunnel study on the vertical discharge of airborne pollutant dispersion around the step down canyon
指導教授:蕭葆羲蕭葆羲引用關係
指導教授(外文):Shiau, Bao-Shi
口試委員:蕭葆羲林呈羅元隆蔡秉直
口試委員(外文):Shiau, Bao-ShiLin, ChangLo, Yuan-LungTsai, Ben-Jue
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:污染擴散風洞實驗街谷
外文關鍵詞:Pollution dispersionwind tunnel experimentstreet canyon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要透過環境風洞實驗探討都市地形之中性大氣紊流邊界層內下降型街谷在不同建物高差、街谷間距、汙染源排放高度的不同條件下之汙染擴散特性。
實驗結果顯示:
(1) 環境風洞配合渦流產生器粗糙元素及粗糙元素,模擬出所需之都市地形之中性大氣紊流邊界層,且指數律風速剖面之n值為0.27,符合Counihan(1975)實場研究結果之建議值。
(2) 當街谷間距較小時,汙染濃度容易滯留於街谷內。當街谷間隔加大時,街谷上方之汙染往下游擴散。
(3) 街谷下降較大(後排建物高度較低)時,街谷之汙染擴散尺度較大。
(4) 當街谷間距增加時,建物之高度改變對擴散影響將不顯著。

The study was to investigate the dispersion of elevated source which discharged vertically into the step down canyon. The urban type of neutral atmospheric turbulent boundary layer was simulated in the wind tunnel. The mean velocity profile was expressed in power-law with the exponent n=0.27. The simulation results are found in agreement with the results proposed by Counihan(1975). Measurement results show that the pollutants are accumulated in the street canyon when the width of canyon becomes narrow. As the width of canyon is wider, the pollutants diffuse better. When the step down steepness for canyon increases, the dispersion becomes better in the canyon. The effect on the pollution dispersion for canyon width is more significant than that of for canyon step down steepness.
摘要 I
ABSTRACT II
目次 III
圖目次 V
符號說明 IX
第一章 導論 1
1-1 前言 1
1-2 研究目的 1
1-3 文獻回顧 1
第二章 風洞試驗之基本理論分析 3
2-1 中性大氣紊流邊界層之風場特性 3
2-1-1 平均風速剖面 3
2-2 中性大氣紊流邊界層之風洞試驗模擬 5
2-2-1 渦流產生器(spire)之設計原理 5
2-2-2 粗糙元素(roughness elements)之設計原理 6
2-2-3 相似性法則 6
2-3 濃度因次分析 8
2-4 高斯擴散理論 10
第三章 試驗儀器與量測 12
3-1 試驗儀器 12
3-1-1 大氣環境風洞介紹 12
3-1-2 風場量測儀器 13
3-1-3 濃度場量測之儀器 13
3-2 試驗設計與方法 14
3-2-1 模型設計 14
3-2-2 採集斷面設計 15
3-2-3 追蹤氣體設計 15
第四章 試驗結果與討論 16
4-1 迫近流場模擬結果 16
4-2 風場特性分析 16
4-3 濃度場擴散分佈之特性分析 16
4-3-1 後排建物高為0.5H之濃度擴散分析 17
4-3-2 後排建物高為0.75H之濃度擴散分析 18
4-3-3 後排建物高度變化之垂直剖面濃度比對分析 18
4-3-4 煙囪(排放源)變化之垂直剖面濃度比對分析 19
4-3-5 各斷面擴散尺度之變化分析 19
4-4 高斯擴散理論分析與討論 19
第五章 結論 21
參考文獻 22
附圖 24
謝誌 97


[1] Bietry, J., Sacre, C., and Simu, E., “Mean wind profiles and changes of terrain roughness”, Journal of the Structure Division, ASCE, Vol. 104, pp.1585-1593, 1978.
[2] Bing-Chen Wang, Eugene Yee, Fue-Sang Lien, “Numerical study of dispersing pollutant clouds in a built-up environment”, International Journal of Heat and Fluid Flow, Vol. 30, pp. 3-19, 2009.
[3] Businger, J.A., “Aerodynamics of vegetated surface”, Chapter 10, pp.139-165; “Heat and Mass Transfer in the Biosphere”, Vol. 1; “Transfer Processes in the Plant Environment”, Scripton Book Co., Washington D.C., 1974.
[4] Cermak, J.E., “Application of fluid mechanics to wind engineering”, A freeman-scholar lecture, Journal of Fluids Engineering , ASME, Vol. 97, pp. 9-38, 1975.
[5] Cermak, J.E., “Wind tunnel design for physical modeling of atmospheric boundary layer”, Journal of Engineering Mechanics, Vol. 107, pp. 623-642, 1981.
[6] Counihan, J., “Adiabatic atmospheric boundary layer: A review and analysis of data from the period 1880-1972”, Atmospheric Environment, Vol. 9, pp. 871-905, 1975.
[7] Counihan, J., “Simulation of an adiabatic urban boundary layer in a wind tunnel”, Atmospheric Environment, Vol. 7, pp. 673-698, 1973.
[8] Devenport, A.G., “The relationship of wind structure to wind loading”, Proceedings of Symposium on Wind Effects on Building Sand Structure, pp. 53-102,1965.
[9] Eurocode 1, “Basis of Design and Actions on Structures—Part 2-4: Actions on Structures –Wind Actions”, European Prestandard ENV 1991-1-2-4.
[10] Gartshore, I.S., and DeCross, K.A., “Roughness element geometry required for wind tunnel simulations of the atmospheric wind”, Transactions of the ASME, Journal of Fluid Engineering, pp. 408-485, 1977.
[11] Irwin, H.P.A.H, “The design of spire foe wind simulation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 7, pp. 361-366, 1981.
[12] Jensen, M., “The model law for phenomena in a natural wind”, Ingenioren, Vol. 2, No. 4, 1958.
[13] Kato, M. and Hanafusa, T., “Wind tunnel simulation of atmospheric turbulent flow over a flat terrain”, Atmospheric Environment, Vol. 30, Issue 16, pp. 2853-2858, 1996.
[14] Nakayasa, H. and Nagai, H., “Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation Part 2:Turbulent flow and plume dispersion around a cubical building”, Journal of Nuclear Science and Technology, Vol. 48, pp. 374-383, 2011.
[15] Salim Mohamed Salim, Riccardo Buccolieri, Andrew Chan, Silvana Di Sabatino, “Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, pp. 103-113, 2011.
[16] Seong-Kyu Park, Shin-Do Kim, Heekwan Lee, “Dispersion characteristics of vehicle emission in an urban street canyon”, Science of the Total Environment, Vol. 323, pp. 263-271, 2004.
[17] Sill, B.L., “Turbulent boundary layer profiles over uniform rough surface”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 31, pp. 147-163, 1988.
[18] Snyder, W.H., “Similarity criteria for the application of fluid models to the study of air pollution meteorology”, Boundary Layer Meteorology, Vol. 3, pp. 113-134, 1972.
[19] Townsend, A.A., “The structure of turbulent shear flow”, Cambridge University Press, pp. 53, 1956.
[20] Von Karman, T., “Progress in the Statistical Theory of Turbulence”, Proceedings of National Academy of Science, Vol.34, pp.530-539, 1948.
[21] V.D. Assimakopoulos, H.M. ApSimon, N. Moussiopoulos, “A numerical study of atomospheric pollutant dispersion in different two-dimensional street canyon configurations”, Atmospheric Environment, Vol. 37, pp.4037-4049, 2003.
[22] Wooding, R.A., Bradley, E.F. and Marshall, J.K., “Drag due to regular arrays of roughness elements of varying geometry”, Boundary-Layer Meteorology, Vol. 5, Num. 3, pp. 285-308, 1973.
[23] 蕭葆羲, “環境風洞基本特性測試及中性大氣紊流邊界層之模擬”,國立臺灣海洋大學河海工程學系環境風洞實驗室技術報告,1998年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊