跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳思慧
研究生(外文):Wu, Sih-Huei
論文名稱:溶液中添加抗菌離子對鈦表面微弧氧化膜的製備及其生物活性之影響
論文名稱(外文):Effect of Silver Salt in the Electrolyte on the Antibacterial Coating of Titanium Alloy by Microarc Oxidation
指導教授:李九龍李九龍引用關係
指導教授(外文):Lee, Jeou-Long
口試委員:葛明德劉沖明楊木榮沈永康
口試委員(外文):Ger, Ming-DerLiu, Chung-MingYang, Mu-RongShen, Yung-Kang
口試日期:2013-07-09
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:微弧氧化
外文關鍵詞:Microarc OxidationTitaniumSilver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試利用微弧氧化法製備含銀之氧化鈦層,本論文分為兩部分:第一部分以微弧氧化法製備氧化鈦層。第二部分嘗試使用多種方法使銀附著於氧化鈦層表面,並以掃描式電子顯微鏡(SEM)觀察不同方法之表面形貌、能量發散光譜儀(EDS)觀察表面成分、微細形狀測定儀(α-step)分析表面粗糙度及膜厚、X光繞射儀(XRD)觀察微弧氧化層的結構及相組成,最後使用MTT法檢測比較含銀之氧化鈦層表面細胞活性及抗菌效果。第一部分研究實驗結果顯示:本實驗已成功製備晶相為金紅石及銳鈦礦且具有孔洞之氧化鈦層,且氧化鈦層之厚度、表面孔洞大小、粗糙度及親水性會隨著反應電壓增高而隨之提高。第二部分研究結果顯示:先進行微弧氧化法製備氧化鈦層後再進行銀的還原處理,由此方法可使銀粒子附著於氧化鈦層表面,在經過生物活性檢測後發現含銀粒子之氧化鈦層生物活性會低於未含銀之氧化鈦層,但兩者之生物活性都具有較佳之生物相容性。再經由細菌培養後,有添加銀之氧化鈦層周圍細菌量開始減少,且含銀量越高周圍的細菌量越少。
This study attempted to utilize microarc oxidation to prepare titanium oxide layer containing silver. The present paper was divided into two parts: the first part was to prepare titanium oxide layer via microarc oxidation. The second part tried to use various approaches for adhering silver to the surface of titanium oxide layer. Field Emission Scanning Electron Microscopy (SEM) was used to observe the surface morphology produced by different approaches. Energy Dispersive Spectrometer (EDS) was employed to observe surface composition, whereas Micro-Shape Analyzer (α-step) for analyzing surface roughness and thickness and X-ray generator (XRD) for observing structure and phase composition of microarc oxidation layer. Finally, the MTT assay was conducted to compare the cell activity and antibacterial effects of Titanium Oxide layer containing silver. Research findings of the first part showed that: the experiment successful prepared the crystalline phase of rutile and anatase with pores in the titanium oxide layer, in which the thickness, size of surface pore, roughness and hydrophilic of titanium oxide will be elevated as the reaction voltage increased. Results of the second part of the study indicated that: the silver reduction treatment method on titanium oxide layer prepared by microarc oxidation could adhere silver particles to the surface of the titanium oxide layer. After bioassay, it was found that the biological activity of titanium oxide layers containing silver particles was lower than that of titanium oxide layer without containing silver, but both biological activities hadbetter biocompatibility. Throughout bacterial culture, the quantity of bacteria around titanium oxide layer with the addition of silver began to reduce, and the higher the silver content resulted in the less the quantity of bacteria around.
摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 3
1.3 研究架構 4
第二章 文獻回顧與理論 6
2.1 鈦與鈦合金及其氧化物 6
2.2 氧化鈦薄膜的製備 10
2.2.1 溶膠-凝膠法 10
2.2.2 氣相沉積法 11
2.2.3 陽極氧化法 13
2.2.4 微弧氧化法 17
2.3 氧化鈦薄膜抗菌的應用 21
第三章 實驗方法 25
3.1 實驗步驟 25
3.1.1 試片表面前處理 25
3.1.2 微弧氧化處理 26
3.1.3 實驗條件 28
3.2 氧化膜分析及檢測 29
3.2.1 表面形貌分析 29
3.2.2 成分分析 30
3.2.3 鍍層晶相分析 31
3.2.4 膜層厚度測量 32
3.2.5 膜層親水性測試 33
3.2.6 膜層表面粗糙度分析 34
3.2.7 酵素免疫微量盤分析儀 35
3.3 體外細胞培養 36
3.4 抗菌培養實驗 40
3.5 實驗材料及反應設備 41
3.5.1 材料 41
3.5.2 反應設備 41
第四章 結果與討論 42
4.1 微弧氧化鈦層的製備(第一階段) 42
4.1.1 表面形貌分析 42
4.1.2 鍍層晶相分析 45
4.1.3 粗糙度分析與水滴接觸角分析 46
4.2 添加抗菌劑對氧化鈦膜之影響(第二階段) 48
4.2.1 方法A之實驗結果 49
4.2.2 方法B之實驗結果 52
4.2.3 方法C之實驗結果 58
4.2.3.1 表面形貌分析 59
4.2.3.2 鍍層表面分析 63
4.2.3.3 成分分析 64
4.2.3.4 粗糙度分析與水滴接觸角分析 66
4.3 細胞培養實驗結果 69
4.4 細菌培養實驗結果 72
第五章 結論與未來建議 76
5.1 結論 76
5.2 未來建議 77
參考文獻 78


[1]Rabih, O., Darouiche, M.D. “Treatment of Infections Associated with Surgical Implants,” The New England Journal of Medicine, 350, 1422-1429 (2004).
[2]Morrison, M.L., Buchanan, R.A., Liae, P.K., Berry, C.J., Brigmon, R.L., Riester ,L., Abernathy, H., Jin, C., Narayan, R.J. “Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films,” Diamondand Related Materials, 15, 138-146 (2006).
[3]Damborenea, J.J. de., Cristóbal, A.B., Arenas, M.A., López, V., Conde, A. “Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity,” Materials Letters, 61, 821-823 (2007).
[4]Hong, I.T., Koo, C.H. “Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel,” Materials Science and Engineering: A, 393, 213-222 (2005).
[5]Shirai, T., Shimizu, T., Ohtani, K., Zen, Y., Takaya, M., Tsuchiya, H. “Antibacterial iodine-supported titanium implants,” Acta Biomaterialia, 7, 1928-1933 (2011).
[6]Zhao, Q., Liu, Y., Wang, C., Wang, S. “Bacterial adhesion on silicon-doped diamond-like carbon films,” Diamond and Related Materials, 16, 1682-1687 (2007).
[7]餘國文、張高科、胡波,「金屬係無機抗菌材料研究進展」,工業安全與環保,第30卷,第4期,第34-36頁(2004)。
[8]Slawsonm R.M., Van-Dyke, M.I., Lee, H., Trevors, J.T. “Germanium and silver resistance, accumulation,and toxicity in microorganisms,” Plasmid, 27, 72-79 (1992).
[9Zhao, G.J., Stevens Jr, S.E. “Multiple parameters for the comprehensive evaluation of the susceptibilityof Escherichia coli to the silver ion,” Biometals, 11, 27-32 (1998).
[10]Sul, Y.T. “The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant,” Biomaterials, 24, 3893-3907 (2003).
[11]Lim, Y.W., Kwon, S.Y., Sun, D.H., Kim, H.E., Kim, Y.S. “Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation,” Clinical Orthopaedics and Related Research, 467, 2251-2258 (2009).
[12]Augustynski, J. “The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2,” Electrochimica Acta, 38, 43-46 (1993).
[13]張立群,光清淨革命--活躍的TiO2光觸媒,台北市:協志工業叢書出版股份有限公司 (2000)。
[14]Yakovlev, V.V., Scarel, G., Aita, C.R., Mochizuki, S. “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Applied Physics Letters, 76, 1107-1109 (2000).
[15]Ochsenbein, A., Chai, F., Winter, S., Traisnel, M., Breme, J., Hildebrand, H.F. “Osteoblast responses to different oxide coatings produced by the sol–gel process on titanium substrates,” Acta Biomaterialia, 4, 1506-1517 (2008).
[16]Tripathi, A.M., Nair, Ranjith G., Samdarshi, S.K. “Visible active silver sensitized vanadium titanium mixed metal oxide photocatalyst nanoparticles through sol–gel technique,” Solar Energy Materials & Solar Cells, 94, 2379-2385 (2010).
[17]Keller, F., Hunter, M.S., Robinson, D.L. “Structural Features of Oxide Coatings on Aluminum,"Journal of The Electrochemical Society, 100, 411-419 (1953).
[18]Masuda, H., Fukuda, K. “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268, 1466-1468 (1995).
[19]Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., Aucouturier, M. “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy,” Surface and Interface Analysis, 27, 629-637(1999).
[20]熊楚強、王月,電化學,新北市:新文京開發出版股份有限公司(2008) 。
[21]Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., Grimesa, C.A. “Fabrication of tapered, conical-shaped titania nanotubes,” Journal of Materials Research, 18, 2588-2593 (2003).
[22]Zhao, J., Wang, X., Chen, R., Li, L. “Fabrication of titanium oxide nanotube arrays by anodic oxidation,” Solid State Communications, 134, 705-710 (2005).
[23]Liu, H., Liu, G., Zhou, Q. “Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity,” Journal of Solid State Chemistry, 182, 3238-3242 (2009).
[24]Gan, Y.X., Gan, B.J., Sua, L. “Biophotofuel cell anode containing self-organized titanium dioxide nanotube array,” Materials Science and Engineering B, 176, 1197-1206 (2011).
[25]Capek, D., Gigandet, M.P., Masmoudi, M., Wery, M., Banakh, O. “Long-time anodisation of titanium in sulphuric acid,” Surface & Coatings Technology, 202, 1379-1384 (2008).
[26]Zhao, J., Wang, X., Chen, R., Li, L. “Fabrication of titanium oxide nanotube arrays by anodic oxidation,” Solid State Communications, 134, 705-710 (2005).
[27]Bauer, S., Kleber, S., Schmuki, P. “TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes,” Electrochemistry Communications, 8, 1321-1325 (2006).
[28]Brammer, K.S., Oh, S., Cobb, C.J., Bjursten, L.M. “Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface,” Acta Biomaterialia, 5, 3215-3223 (2009).
[29]Sxennik, E., Colak, Z., Kilinc, N., Ozturk, Z.Z. “Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor,” International Journal of Hydrogen Energy, 35, 4420-4427 (2010).
[30]馮克林,「微電弧電漿電化學技術,輕金屬專題」,工業材料雜誌,第211期,第104-109頁(2004)。
[31]Markova, G.V. “Internal friction during martensitic transformation in high manganese Mn–Cu alloys ,” Materials Science and Engineering, 370, 473-476 (2004) .
[32]薛文斌、鄧志威、來永春,「鋁合金微弧氧化陶瓷膜的形成過程及其特性」,電鍍與精飾,第4期,第3-6頁(1996)。
[33]鄧志威、薛文斌、汪新福,「鋁合金表面微弧氧化技術」,材料保護,第29期,第15-16頁(1996)。
[34]鐘時俊、Oleg Demine、翁榮洲,「微電弧氧化表面處理原理與應用」,工業材料雜誌,第194 期,第176-179頁(2003)。
[35]侯亞麗、劉忠德,「微弧氧化技術的研究現況」,電鍍與精飾,第27期,第24-28頁(2008)。
[36]Jung, Y.C., Shin, K.R., Ko, Y.G., Shina, D.H. “Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3PO4 and Na3PO4 electrolytes,” Journal of Alloys and Compounds (2013).
[37]Chen, H.T., Chung, C.J., Yang, T.C., Tang, C.H., He, J.L. “Microscopic observations of osteoblast growth on micro-arc oxidized βtitanium,” Applied Surface Science, 266, 73-80 (2013).
[38]Cimenoglu, H., Gunyuz, M., Kose, G.T., Baydogan, M., Uğurlu, F., Sener, C. “Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications,” Materials Characterization , 62, 304-211 (2011).
[39]Hairui, W., Fu, L., Yanpeng, Z., Fuping, W. “Structure, corrosion resistance and apatite-forming ability of NiTi alloy treated by micro-arc oxidation in concentrated H2SO4,” Surface & Coatings Technology, 206, 4054-4059 (2012).
[40]蔡文榮,銀酞菁有機矽氧烷抗菌劑製備與應用於抗菌織布之研究,碩士學位論文,國防大學化學及材料科學系,桃園(2010)。
[41]王準、王成浩,「抗菌金屬材料的研究進展」,腐蝕科學與防護技術,第2期,第96-100頁(2004)。
[42]童忠良,無機抗菌材料與技術,北京:化學工業出版社(2006)。
[43]Ivan, S., Branka, S.S. “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, 275, 177-182 (2004).
[44]Jia, H.S., Hou, W.S., Wei, L.Q., Xu, B.S., Liu, X.G. “The structures and antibacterial properties of nano-SiO2 supported silver/zin-silver materials,” Dental Materials, 24, 244-249 (2008).
[45]Wang, X., Hou, X., Luan, W., Li, D., Yao, K. “The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol–gel method,” Applied Surface Science, 258, 8241-8246 (2012).
[46]Martinez-Gutierrez, F., Olive, P.L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E.M., Ruiz, F., Bach, H., Av-Gay, Y. “Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 681-688 (2010).
[47]Li, L.H., Kong, Y.M., Kim, H.W., Kim, Y.W., Kim, H.E., Heo, S.J., Koak, J.Y. “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, 25, 2867-2875 (2004).
[48]Kim, M.J., Choi, M.U., Kim, C.W. “Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell,” Biomaterials, 27, 5502-5511 (2006).
[49]Montanaro, L., Arciola, C.R., Campoccia, D., Cervellati, M. “In vitro effects on MG63 osteoblast-like cells followingcontact with two roughness-differing fluorohydroxyapatite-coated titanium alloys,” Biomaterials, 23, 3651-3659 (2002).
[50]Yang, Y.Z., Tian, J.M., Deng, L., Ong, J.L. “Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro,” Biomaterials, 23, 1383-1389 (2002).
[51]Rupp, F., Scheideler, L., Olshanska, N., Wild, M. de., Wieland, M., Geis-Gerstorfer, J. “Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces,” Journal of Biomedical Materials Research Part A, 76, 323-334 (2006).
[52]鐘星華、徐淑蘭、周敏、楊爍、姚中雄、王朝,「鈦表面載鈣磷/銀復合膜層的特征及對成骨細胞黏附的影響」,廣東醫學,第8期,第1084-1087頁(2012)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top