[1]Rabih, O., Darouiche, M.D. “Treatment of Infections Associated with Surgical Implants,” The New England Journal of Medicine, 350, 1422-1429 (2004).
[2]Morrison, M.L., Buchanan, R.A., Liae, P.K., Berry, C.J., Brigmon, R.L., Riester ,L., Abernathy, H., Jin, C., Narayan, R.J. “Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films,” Diamondand Related Materials, 15, 138-146 (2006).
[3]Damborenea, J.J. de., Cristóbal, A.B., Arenas, M.A., López, V., Conde, A. “Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity,” Materials Letters, 61, 821-823 (2007).
[4]Hong, I.T., Koo, C.H. “Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel,” Materials Science and Engineering: A, 393, 213-222 (2005).
[5]Shirai, T., Shimizu, T., Ohtani, K., Zen, Y., Takaya, M., Tsuchiya, H. “Antibacterial iodine-supported titanium implants,” Acta Biomaterialia, 7, 1928-1933 (2011).
[6]Zhao, Q., Liu, Y., Wang, C., Wang, S. “Bacterial adhesion on silicon-doped diamond-like carbon films,” Diamond and Related Materials, 16, 1682-1687 (2007).
[7]餘國文、張高科、胡波,「金屬係無機抗菌材料研究進展」,工業安全與環保,第30卷,第4期,第34-36頁(2004)。
[8]Slawsonm R.M., Van-Dyke, M.I., Lee, H., Trevors, J.T. “Germanium and silver resistance, accumulation,and toxicity in microorganisms,” Plasmid, 27, 72-79 (1992).
[9Zhao, G.J., Stevens Jr, S.E. “Multiple parameters for the comprehensive evaluation of the susceptibilityof Escherichia coli to the silver ion,” Biometals, 11, 27-32 (1998).
[10]Sul, Y.T. “The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant,” Biomaterials, 24, 3893-3907 (2003).
[11]Lim, Y.W., Kwon, S.Y., Sun, D.H., Kim, H.E., Kim, Y.S. “Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation,” Clinical Orthopaedics and Related Research, 467, 2251-2258 (2009).
[12]Augustynski, J. “The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2,” Electrochimica Acta, 38, 43-46 (1993).
[13]張立群,光清淨革命--活躍的TiO2光觸媒,台北市:協志工業叢書出版股份有限公司 (2000)。
[14]Yakovlev, V.V., Scarel, G., Aita, C.R., Mochizuki, S. “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Applied Physics Letters, 76, 1107-1109 (2000).
[15]Ochsenbein, A., Chai, F., Winter, S., Traisnel, M., Breme, J., Hildebrand, H.F. “Osteoblast responses to different oxide coatings produced by the sol–gel process on titanium substrates,” Acta Biomaterialia, 4, 1506-1517 (2008).
[16]Tripathi, A.M., Nair, Ranjith G., Samdarshi, S.K. “Visible active silver sensitized vanadium titanium mixed metal oxide photocatalyst nanoparticles through sol–gel technique,” Solar Energy Materials & Solar Cells, 94, 2379-2385 (2010).
[17]Keller, F., Hunter, M.S., Robinson, D.L. “Structural Features of Oxide Coatings on Aluminum,"Journal of The Electrochemical Society, 100, 411-419 (1953).
[18]Masuda, H., Fukuda, K. “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268, 1466-1468 (1995).
[19]Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., Aucouturier, M. “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy,” Surface and Interface Analysis, 27, 629-637(1999).
[20]熊楚強、王月,電化學,新北市:新文京開發出版股份有限公司(2008) 。
[21]Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., Grimesa, C.A. “Fabrication of tapered, conical-shaped titania nanotubes,” Journal of Materials Research, 18, 2588-2593 (2003).
[22]Zhao, J., Wang, X., Chen, R., Li, L. “Fabrication of titanium oxide nanotube arrays by anodic oxidation,” Solid State Communications, 134, 705-710 (2005).
[23]Liu, H., Liu, G., Zhou, Q. “Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity,” Journal of Solid State Chemistry, 182, 3238-3242 (2009).
[24]Gan, Y.X., Gan, B.J., Sua, L. “Biophotofuel cell anode containing self-organized titanium dioxide nanotube array,” Materials Science and Engineering B, 176, 1197-1206 (2011).
[25]Capek, D., Gigandet, M.P., Masmoudi, M., Wery, M., Banakh, O. “Long-time anodisation of titanium in sulphuric acid,” Surface & Coatings Technology, 202, 1379-1384 (2008).
[26]Zhao, J., Wang, X., Chen, R., Li, L. “Fabrication of titanium oxide nanotube arrays by anodic oxidation,” Solid State Communications, 134, 705-710 (2005).
[27]Bauer, S., Kleber, S., Schmuki, P. “TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes,” Electrochemistry Communications, 8, 1321-1325 (2006).
[28]Brammer, K.S., Oh, S., Cobb, C.J., Bjursten, L.M. “Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface,” Acta Biomaterialia, 5, 3215-3223 (2009).
[29]Sxennik, E., Colak, Z., Kilinc, N., Ozturk, Z.Z. “Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor,” International Journal of Hydrogen Energy, 35, 4420-4427 (2010).
[30]馮克林,「微電弧電漿電化學技術,輕金屬專題」,工業材料雜誌,第211期,第104-109頁(2004)。[31]Markova, G.V. “Internal friction during martensitic transformation in high manganese Mn–Cu alloys ,” Materials Science and Engineering, 370, 473-476 (2004) .
[32]薛文斌、鄧志威、來永春,「鋁合金微弧氧化陶瓷膜的形成過程及其特性」,電鍍與精飾,第4期,第3-6頁(1996)。
[33]鄧志威、薛文斌、汪新福,「鋁合金表面微弧氧化技術」,材料保護,第29期,第15-16頁(1996)。
[34]鐘時俊、Oleg Demine、翁榮洲,「微電弧氧化表面處理原理與應用」,工業材料雜誌,第194 期,第176-179頁(2003)。
[35]侯亞麗、劉忠德,「微弧氧化技術的研究現況」,電鍍與精飾,第27期,第24-28頁(2008)。
[36]Jung, Y.C., Shin, K.R., Ko, Y.G., Shina, D.H. “Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3PO4 and Na3PO4 electrolytes,” Journal of Alloys and Compounds (2013).
[37]Chen, H.T., Chung, C.J., Yang, T.C., Tang, C.H., He, J.L. “Microscopic observations of osteoblast growth on micro-arc oxidized βtitanium,” Applied Surface Science, 266, 73-80 (2013).
[38]Cimenoglu, H., Gunyuz, M., Kose, G.T., Baydogan, M., Uğurlu, F., Sener, C. “Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications,” Materials Characterization , 62, 304-211 (2011).
[39]Hairui, W., Fu, L., Yanpeng, Z., Fuping, W. “Structure, corrosion resistance and apatite-forming ability of NiTi alloy treated by micro-arc oxidation in concentrated H2SO4,” Surface & Coatings Technology, 206, 4054-4059 (2012).
[40]蔡文榮,銀酞菁有機矽氧烷抗菌劑製備與應用於抗菌織布之研究,碩士學位論文,國防大學化學及材料科學系,桃園(2010)。[41]王準、王成浩,「抗菌金屬材料的研究進展」,腐蝕科學與防護技術,第2期,第96-100頁(2004)。
[42]童忠良,無機抗菌材料與技術,北京:化學工業出版社(2006)。
[43]Ivan, S., Branka, S.S. “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, 275, 177-182 (2004).
[44]Jia, H.S., Hou, W.S., Wei, L.Q., Xu, B.S., Liu, X.G. “The structures and antibacterial properties of nano-SiO2 supported silver/zin-silver materials,” Dental Materials, 24, 244-249 (2008).
[45]Wang, X., Hou, X., Luan, W., Li, D., Yao, K. “The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol–gel method,” Applied Surface Science, 258, 8241-8246 (2012).
[46]Martinez-Gutierrez, F., Olive, P.L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E.M., Ruiz, F., Bach, H., Av-Gay, Y. “Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 681-688 (2010).
[47]Li, L.H., Kong, Y.M., Kim, H.W., Kim, Y.W., Kim, H.E., Heo, S.J., Koak, J.Y. “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, 25, 2867-2875 (2004).
[48]Kim, M.J., Choi, M.U., Kim, C.W. “Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell,” Biomaterials, 27, 5502-5511 (2006).
[49]Montanaro, L., Arciola, C.R., Campoccia, D., Cervellati, M. “In vitro effects on MG63 osteoblast-like cells followingcontact with two roughness-differing fluorohydroxyapatite-coated titanium alloys,” Biomaterials, 23, 3651-3659 (2002).
[50]Yang, Y.Z., Tian, J.M., Deng, L., Ong, J.L. “Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro,” Biomaterials, 23, 1383-1389 (2002).
[51]Rupp, F., Scheideler, L., Olshanska, N., Wild, M. de., Wieland, M., Geis-Gerstorfer, J. “Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces,” Journal of Biomedical Materials Research Part A, 76, 323-334 (2006).
[52]鐘星華、徐淑蘭、周敏、楊爍、姚中雄、王朝,「鈦表面載鈣磷/銀復合膜層的特征及對成骨細胞黏附的影響」,廣東醫學,第8期,第1084-1087頁(2012)。