跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳秉翰
研究生(外文):WU,BING-HAN
論文名稱:PLA生物複合材料薄膜之機械性質測試與模擬
論文名稱(外文):The Test of Mechanical Properties and Simulation of PLA Bio-degradable Composite Film
指導教授:劉乃上
指導教授(外文):LIOU,NAI-SHANG
口試委員:蔡立仁徐烱勛
口試委員(外文):CAI,LI-RENSYU,JYONG-SYUN
口試日期:2016-07-26
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:43
中文關鍵詞:聚乳酸生物可分解材料力學分析有限元素擬合
外文關鍵詞:PLAbiodegradable materialsmechanical analysisfinite element fitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以靜態力學測試、有限元素模擬軟體分析分析以聚乳酸(PLA)為主要材質之生物複合材料薄膜。DIC光學影像分析被用來分析實驗過程的照片,確認試片在拉伸實驗過程中有確實的平均受力,沒有任何歪斜,增加實驗數據的準確性。在靜態力學測試部分,使用拉伸試驗機與自製夾具,對8種不同成分含量之PLA薄膜進行三種不同速度之拉伸-保持實驗,並依據其實驗結果分析拉伸期間的受力、平均應力與平均應變,並計算出平均值與標準差,從中對不同成分與含量的PLA薄膜提出一個初步的比較。最後使用有限元素模擬軟體針對實驗獲得之數據進行模擬並比較與實際數據之間的差別。經過實驗之後,無機矽薄膜所表現出來的成分濃度與機械性質之關係與我們事先估計的情況大略相同,但其在拉伸速度最慢時卻展現出最大受力的情況。僅能先推測無機矽薄膜本身隨著受力次數的增加,可能會逐漸產生硬化的狀況。有機矽薄膜在矽濃度為0.5%時所表現出的機械性質最佳。從與拉伸時間的相互關係來看,可確認其並不會產生與無機矽薄膜類似的情況。 在擬和部分,從比較結果中可以看出模擬數據隨著時間過去,其跟實際數據之誤差也越來越大,推論這跟試片本身隨著實驗逐漸受損有關。使用顯微鏡所觀察到的試片照片上有著許多裂縫,可以認定隨著實驗時間的推進,試片本身的裂縫會隨著受力逐漸增大而跟著被擴大或是增加額外的裂縫,進而影響到後段的實驗結果。
The mechanical properties the bio-composite films which use the PLA (Poly lactic Acid) as the basic materials were studied by using static mechanics test, finite element simulation software in this work. The DIC optically image analysis was using to analyze the pictures which taken during the test to make sure that the films were extend average without any crooked to increase the accuracy of data. In the part of static mechanics test, the tensile testing machine and self-made clamps were used to conduct the ramp-told test of 8 kinds of PLA films which has different kinds of ingredients and content of additives, and calculate the average value and standard deviation by analyze the force, stress and strain according to the test data to make a preliminary comparison for different kinds of PLA films. Then, the finite element simulation software was used to make the simulation to compare with the reality test data. After the test, the relationship between ingredient and mechanical properties of inorganic silicon films is similar to the situation we estimated first, but it has the biggest force at the slowest speed. It can only surmised that the inorganic silicon films may will be hardening gradually after the test. The organic silicon films showed the best mechanical properties at 0.5% of ingredient of silicon. It can be confirmed that the organic silicon films won't produce the similar situation with inorganic silicon films by observed the relationship between ingredient and mechanical properties of organic silicon films. At the part of fitting, the error between the actual data and simulated data was getting bigger as time goes on. It can be confirmed that is related to the broken of films during the test. In the micrograph of films, there are many tiny cracks can be observed. As the result, it can say that the second half of the test may be affected because of the cracks which were getting bigger or extra generated cracks during the test.
摘要 i
Abstract ii
目次 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究動機 2
1.4 本文架構 2
第二章 文獻回顧與PLA試片簡介 4
2.1 生物材料的添加 4
2.2 PLA薄膜試片之製程與介紹 5
第三章 研究方法 6
3.1 實驗器材 6
3.2 實驗步驟 7
3.3 實驗流程 9
3.4 DIC光學影像分析的驗證 11
3.5 線性黏彈性模型與損傷模型 11
3.5.1 線性黏彈性模型 13
3.5.2 損傷模型 14
第四章 結果與討論 16
4.1 時間分類 16
4.1.1 無機矽試片 16
4.1.1.1 0.3mm/sec 16
4.1.1.2 0.03mm/sec實驗 17
4.1.1.3 0.003mm/sec實驗 18
4.1.2 有機矽試片 19
4.2.1.1 0.3mm/sec實驗 19
4.1.2.2 0.03mm/sec實驗 20
4.1.2.3 0.003mm/sec實驗 21
4.2 種類分類 23
4.2.1 無矽試片 23
4.2.2 無機矽試片 24
4.2.3 有機矽試片 26
4.3 0.3mm/sec實驗與瞬間楊氏係數 28
4.3.1 無機矽試片 28
4.3.2 有機矽試片 29
4.3.3 瞬間楊氏係數變化趨勢 30
4.4 瞬間楊氏係數與鬆弛率 32
4.4.1 無機矽試片 32
4.4.2 有機矽試片 34
4.5 ABAQUS擬和結果與實驗後試片之顯微鏡觀察結果 35
4.5.1 ABAQUS擬和結果 35
4.5.2 顯微鏡觀察結果 35
第五章 結論與未來展望 38
5.1 結論 38
5.2 未來展望 39

參考文獻 40

1.Yu, L., Dean, K., and Li, L. (2006). "Polymer blends and composites from renewable resources," Progress in Polymer Science 31(6), 576-602. DOI:10.1016/j.progpolymsci.2006.03.002
2.Saba, N., Paridah, M. T., and Jawaid, M. (2014) "A review on potentiality of nanofiller/natural fiber filled polymer hybrid composites," Polymers 6, 2247-2273. DOI:10.3390/polym6082247
3.Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., and Jiménez, A. (2014)."Natural additives and agricultural wastes in biopolymer formulations for food packaging," Frontiers in Chemistry 2, 6. DOI:10.3389/fchem.2014.00006
4.PLA, PGA, and PLGA as biomaterials, by Colton Kenny
http://openwetware.org/wiki/PLA,_PGA,_and_PLGA_as_biomaterials,_by_Colton_Kenny
5.吳進三, "清潔生產綠色複合材簡介" ,Kao Yuan University 奈米級生物可分解複合材料,2012
http://www.eng.kyu.edu.tw/data/febl/05/2012-1130-%E6%B8%85%E6%BD%94%E7%94%9F%E7%94%A2%E6%BC%94%E8%AC%9BPower%20Point-(%E7%94%9F%E7%89%A9%E5%8F%AF%E5%88%86%E8%A7%A3%E5%A1%91%E8%86%A0).pdf
6.Yin Y. Yee, Yern Chee Ching, Shaifulazuar Rozali, N. Awanis Hashim, and Ramesh Singh, " Preparation and Characterization of Poly(lactic Acid)- based Composite Reinforced with Oil Palm Empty Fruit Bunch Fiber and Nanosilica "(2016).“PLA composite with OPEFB,” BioResources 11(1), 2269-2286.
7.A.K. Bledzki, J. Gassan, "Composites reinforced with cellulose based fibres" Progress in Polymer Science, 24 (2) (1999), pp. 221–274
8.Khoon, K. T., Ching, Y. C., Poh, S. C., Luqman, C. A., and Gan, S. N. (2015). "A review of natural fiber reinforced poly(vinyl alcohol) based composites: Application and opportunity," Polymers 7(11), 2205-2222. DOI: 10.3390/polym7111509
9.R. Bodirlau, C.A. Teaca, I. Spiridon,"Influence of natural fillers on the properties of starch-based biocomposite films"Composites: Part B, 44 (2013), pp. 575–583
10.Oksman, K., Skrifvars, M., and Selin, J.-F. (2003). "Natural fibres as reinforcement inpolylactic acid (PLA) composites," Composites Science and Technology 63(9), 1317-1324. DOI: 10.1016/S0266-3538(03)00103-9
11.Huda, M. S., Drzal, L. T., Mohanty, A. K., and Misra, M. (2008). "Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers," Composites Science & Technology 68(2), 424-432. DOI:10.1016/j.compscitech.2007.06.022
12.Yu, T., Ren, J., Li, S., Yuan, H., and Li, Y. (2010). "Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites," Composites Part A: Applied Science & Manufacturing 41(4), 499-505.
DOI: 10.1016/j.compositesa.2009.12.006
13.Kang, J. T., and Kim, S. H. (2011). "Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification,"Macromolecular Research 19(8), 789-796. DOI:10.1007/s13233-011-0807-y
14.Rayung, M., Ibrahim, N. A., Zainuddin, N., Saad, W. Z., Razak, N. I. A., and Chieng, B.W. (2014). "The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites," International Journal of Molecular Sciences 15(8), 14728-14742. DOI:10.3390/ijms150814728
15.Ching, Y. C., and Ng, T. S. (2014). "Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber," BioResources 9(4), 6373-6385. DOI: 10.15376/biores.9.4.6373-638.
16.Yong, K. C., Ching, Y. C., Mohamad, A., Lim, Z. K., and Chong, K. E. (2015)."Mechanical and thermal properties of chemical treated oil palm empty fruit bunchesfiber reinforced polyvinyl alcohol composite," J. Biobased Mater. Bioenergy 9, 231-235.
17.Siyamak, S., Ibrahim, N. A., Abdolmohammadi, S., Yunus, W. M. Z. B. W., and Rahman, M. Z. A. (2012). "Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly (butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride," Molecules 17(2), 1969-1991. DOI:10.3390/molecules17021969
18.Petersson, L., and Oksman, K. (2006). "Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement," Composites Science & Technology 66(13), 2187-2196. DOI: 10.1016/j.compscitech.2005.12.010
19.Ray, S. S., and Okamoto, M. (2003). "Polymer/layered silicate nanocomposites: A review from preparation to processing," Progress in Polymer Science 28(11), 1539-1641. DOI: 10.1016/j.progpolymsci.2003.08.002
20.Vaibhav, V., Vijayalakshmi, U., and Roopan, S. M. (2015). "Agricultural waste as a source for the production of silica nanoparticles," Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy 139, 515-520. DOI:10.1016/j.saa.2014.12.083
21.Battegazzore, D., Bocchini, S., Alongi, J., and Frache, A. (2014). "Rice husk as biosource of silica: Preparation and characterization of PLA–silica bio-composites," RSC Advances 4(97), 54703-54712. DOI:10.1039/C4RA05991C
22.Mustapa, I. R., Robert, A. S. and Ing, K. (2013). "Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties," International Journal of Advanced Science and Engineering Technology 3(1), 192-199. DOI: 10.1515/secm-2013-0119
23.Yan, S., Yin, J., Yang, J., and Chen, X. (2007a). "Structural characteristics and thermal properties of plasticized poly (L-lactide)-silica nanocomposites synthesized by sol–gel method," Materials Letters 61(13), 2683-2686. DOI:10.1016/j.matlet.2006.10.023
24.Ching, Y. C., Rahman, A., Ching, K. Y., Sukiman, N. L., and Cheng, H. C. (2015)."Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica," BioResources 10(2), 3364-3377. DOI: 10.15376/biores.10.2.3364-3377
25.Yan, S., Yin, J., Yang, Y., Dai, Z., Ma, J., and Chen, X. (2007b). "Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly (l-lactide)," Polymer 48(6),1688-1694. DOI:10.1016/j.polymer.2007.01.037
26.Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., and Hwang, T.-S. (2007). "Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites,"Composite Structures 77(1), 45-55. DOI:10.1016/j.compstruct.2005.06.005
27.Tan, B. K., Ching, Y. C., Gan, S. N, and Shaifulazuar, R. (2015). “Biodegradable mulches based on poly(vinyl alcohol), kenaf fiber, and urea,”BioResources 10(3),5532-5543. DOI:10.15376/biores.10.3.5523-5543
28.Rhim, J. W., Mohanty, A. K., Singh, S. P., and Ng, P. K. (2006). "Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting," Journal of Applied Polymer Science 101(6), 3736-3742. DOI:10.1002/app.23403

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top