|
[1] F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 471-477. [2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183 [3] C. Carathéodory, Theory of Functions of a Complex Variable, Chelsea Publishing Company, New York, 1954. [4] S.-C. Chen, C.-C. Chuang, On dominating sets for real harmonic functions in Lp norm, submitted. [5] N. Danikas and W. K. Hayman, Domination on sets and in H^p, Results Math. 34 (1998), 85-90. [6] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. [7] W. K. Hayman, On a conjecture of Korenblem, Analysis 19 (1999), 195-205. [8] W. K. Hayman, Domination on sets and in norm, Contemp. Math. 404 (2006), 103-109. [9] A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math. 79 (1999), 335-344. [10] K. Hoffman, Banach Spaces of holomorphic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. [11] B. Korenblum, A maximum principle for the Bergman space, Publ. Mat. 35 (1991), 479-486. [12] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1987. [13] Z.-Y. Wen, L.-M. Wu, and Y.-P. Zhang, Set of zeros of harmonic functions of two variables, Harmonic Analysis, Tianjin (1988), Lecture Notes in Mathematics, 1494, Springer, Berlin (1991), 196-203. [14] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, Inc., New York, 1977.
|