跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/21 14:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文政
研究生(外文):Wen-Cheng Huang
論文名稱:因應氣候變遷坡地永續利用前瞻策略規劃及應用之研究
論文名稱(外文):Planning and implementation of foresight strategies for slopeland sustainability under climate change
指導教授:林昭遠林昭遠引用關係
口試委員:林德貴陸象豫盧惠生羅煌木
口試日期:2016-07-09
學位類別:博士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:195
中文關鍵詞:氣候變遷政策前瞻德菲法策略地圖重點集水區
外文關鍵詞:Climate changePolicy foresightDelphi methodStrategy roadmapKey watersheds
相關次數:
  • 被引用被引用:3
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:1
因全球氣候變遷,造成極端氣候影響日趨明顯,臺灣雖降雨總量約略不變,但高重現期距降雨事件發生機率增加,衝擊山坡地,造成土壤流失、洪水與土砂災害發生,臺灣面積雖小,人口密度位居世界第二,山坡地佔全臺面積約四分之三,故坡地水土資源保育相當重要,在氣候變遷與社會經濟環境改變的衝擊下,如何讓臺灣山坡地永續經營並維持人民居住環境安全是未來非常重要的環境課題。本研究以4種兼具質性與量性的前瞻分析工具(國際趨勢分析、焦點團體法、德菲法、策略地圖等)與輔助決策工具(艾森豪矩陣)交互運用,規劃因應環境變遷策略以提供決策者參考,並由下而上凝聚多元利害關係人對於水土資源永續利用議題發展共識,研擬短、中、長期水土資源保育前瞻策略,以落實臺灣永續願景目標。
本研究利用降雨及蒸發量等長期氣候資料配合濕潤指數計算全臺水收支之平均值、變異係數及長期趨勢之空間分布,據此篩選淹水、乾旱及土砂災害潛勢之三處重點集水區,並提出相關問題及因應對策。結果顯示,朴子溪流域因濕潤指數之變異係數較大且平均值最高,因此為淹水潛勢重點區位;新店溪集水區出口之臺北站因濕潤指數為負趨勢,故為乾旱潛勢區位;旗山溪集水區則因土砂災害較為嚴重,且上游地區濕潤指數高,因此為土砂災害潛勢區位。
朴子溪流域之保育方式宜於中上游段配合農地廣設農塘;新店溪集水區因長期水收支趨勢屬乾旱,在平時因乾旱會造成水域之農業非點源污染物濃度飆高;極端降雨下,坡面崩塌可能造成集水區原水濁度上升,影響大臺北地區用水品質,因此須注意非點源污染之問題。旗山溪集水區則應找出崩塌地植生復育優選區位,嚴防崩塌地擴大及二次災害發生。最後,以短、中、長期水土資源保育前瞻策略為核心,參照專家會議前、後歸納整理之背景資料,做為行動方案擬定資料庫,繪製各重點集水區因應氣候變遷調適策略之目標魚骨圖,明確提供決策單位規劃亟需保育管理集水區之施政方針。

Due to global climate changes, the impact caused by extreme climate has become more and more compelling. In Taiwan, the total rainfall stays in the same level. The rainfall with high recurrence interval happens frequently, leading to soil loss of slope-land, and it may further result in floods and sediment hazards. Although Taiwan is a small island, the population density is ranked at the second highest around the world. Moreover, third-fourth of Taiwan is slope-land, so the soil and water conservation (SWC) is rather important. Therefore, under the impacts of climate and social environmental changes, how to maintain the sustainable development of slopeland and the safety of living environment in Taiwan becomes a crucial issue. This study adopted 4 foresight analyses to cover both qualitative and quantitative aspects, including International Trend Analysis, Focus Group, Delphi method and Strategy Roadmap. In addition, Eisenhower Matrix was taken as a decision support tool to achieve an unbiased result. The findings of this study can contribute to reach consensus among multi-stakeholders on sustainable development of soil and water resources and to lay down foresight strategies of SWC in short-term, mid-term and long-term bases. Ultimately, the goal of sustainability can be realized in Taiwan.
The spatial distribution of water budget in Taiwan was calculated from moisture index derived from long-term data of rainfall and evaporation. According to the values of mean and coefficient of variation of moisture index, the key watersheds with drought, flood and sediment disaster respectively were screened out and the corresponding strategies were proposed in this study. Results show that the basin of Puzih river is a crucial flooding potential area due to having larger coefficient of variation and/or highest average in moisture index; Sindian river watershed with drought potential shows that there is a negative tendency in moisture index; Cishan river watershed has the potential of encountering the secondary debris disaster due to large amount of landslides occurred in the watershed during Typhoon Morakot and located at the areas with high value of moisture index.
The conservation method in the Puzih river basin was recommended to construct farm ponds. Because the long-term trend of water budget is drought in the Sindian river watershed, agriculture non-point source pollutant induced water pollution will increase at the usual time, and the water turbidity will also increase abruptly due to landslide during extreame rainfall. Therefore, the best management practices for non-point sources pollution controls in the Sindian river watershed should be considered. The Cishan river watershed was suggested to find out the treatment priority of landslides for enlargement and secondary disaster prevention. Finally, the database of action program can be drafted using the core foresight strategies of the short, medium and long term conservation resources coupled with the background information of pre- and/or post- expert meeting. The goal fishbone diagram of adaptation strategies can then be drawn as the references of related authorities for policy making under climate change.

摘要 i
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究流程及架構 2
第二章 文獻回顧 5
第一節 氣候變遷衝擊預測及現況 5
一. 全球暖化引致極端氣候加劇 5
二. 區域氣候變遷影響 6
三. 世界各地自然災害風險 9
第二節 各國前瞻運作計畫 12
一. 前瞻定義與內涵 12
二. 科技前瞻與政策前瞻 12
三. 各國前瞻活動 14
第三節 前瞻方法之應用 24
第四節 前瞻策略規劃 25
第五節 國內外氣候變遷與減緩調適策略 27
第六節 極端氣候下臺灣地區氣候變遷情況 35
第七節 水土保持設施之調適策略 38
第八節 「臺灣氣候變遷科學報告」綜整 43
第九節 因應氣候變遷於臺灣水土保持策略之探討 45
第三章 材料與方法 48
第一節 研究樣區 48
第二節 研究材料 49
第三節 研究方法 52
一. 前瞻操作方法 52
二. 重點集水區篩選之方法 60
第四章 結果與討論 68
第一節 前瞻策略規劃 68
一. 國際趨勢與臺灣現況資源盤點分析 68
二. 多元利害關係人對臺灣坡地保育發展之願景與功能定位 70
三. 水土資源永續利用之德菲問卷調查 73
四. 前瞻議題之策略地圖規劃 79
第二節 全臺水收支情形 81
第三節 全臺氣候分類結果 82
第四節 重點集水區篩選 85
一. 淹水潛勢重點集水區-朴子溪流域 85
二. 乾旱潛勢重點集水區-新店溪集水區 88
三. 土石災害重點集水區-旗山溪集水區 89
第五節 重點集水區之調適策略與行動方針 90
一. 朴子溪流域 90
二. 新店溪集水區 92
三. 旗山溪集水區 95
四. 重點集水區因應氣候變遷保育策略綜整 96
五. 重點集水區實例佐證 98
六. 重點集水區保育管理建議 104
第五章 結論與建議 106
第一節 結論 106
一. 前瞻工具應用 106
二. 前瞻環境建構 106
三. 前瞻成果應用 107
第二節 建議 107
一. 前瞻運作工具交互應用建議 107
二. 重點集水區保育策略之整體建議 108
三. 政府部門因應氣候變遷影響之水土保持調適策略操作建議 108
參考文獻 110
附錄 附-1
附錄一 水土資源永續利用德菲法第一回合問卷 附-1
附錄二 水土資源永續利用德菲法第二回合問卷 附-30



一、中文部份
1.TCCIP(2013)「IPCC AR5以及第一工作小組(WGI)報告背景說明」,國科會臺灣氣候變遷推估與資訊平台建置計畫,http://tccip.ncdr.nat.gov.tw/AR5/ar5Intro.html。
2.大世紀世紀天災(2016),Available from: URL:http://www.epochtimes.com/b5/nf425.htm.
3.水土保持局(2000),「水土保持技術規範」,行政院農業委員會編印。
4.王珮兮(2007),「應用TRIGRS模式評估降雨及入滲誘發池上山棕寮地滑」,國立中正大學應用地球物理研究所碩士論文。
5.行政院災害防救委員會(2002),「防救災資訊系統計畫書」,行政院災害防救委員會。
6.行政院經濟建設委員會(2011),「莫拉克颱風災後聚落環境復育之規劃」報告書,行政院經濟建設委員會。
7.行政院農業委員會(2011),「科技前瞻運作機制指導手冊(草案)」,行政院農業委員會。
8.行政院(2012),整體性治山防災(中程)計畫102至105年度(第二期)(核定本) ,行政院。
9.行政院經濟建設委員會(2012),「國家氣候變遷調適政策綱領」(核定版),行政院經濟建設委員會。
10.行政院農業委員會(2012),亞洲水環境管理策略綜觀,行政院農業委員會。
11.行政院國家發展委員會(2012),國家氣候變遷調適政策綱領,行政院國家發展委員會。
12.行政院農業委員會水土保持局(2013),水土資源永續利用之前瞻策略規劃研究計畫,行政院農業委員會水土保持局。
13.行政院農業委員會水土保持局(2013),「水土保持局發展願景及策略」,http://www.swcb.gov.tw/content/index.asp?m1=3&m2=131。
14.行政院環境保護署(2015),「聯合國氣候變化綱要公約第21屆締約國大會」,http://www.cop21.gouv.fr/en。
15.杜恆儉、陳華慧、曾伯勛(1991),「地貌學及第四紀地質學」,地質出版社。
16.李民、張徽正、劉憲德、陳宏仁、高銘健(1997),「陳有蘭溪流遇山崩之地質特性調查」。
17.李宜映(2009),「國際農業前瞻科技發展動向分析」,台灣經濟研究月刊,32(12)。
18.李鈞宇(2006),「應用高斯過程建立新中橫公路邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文。
19.李鎮洋(2011),「氣候變遷下臺灣土砂災害因應對策」,2011年台日砂防共同研究研討會。
20.李鎮洋(2011),莫拉克颱風複合型災害發生歷程的時空重建-小林村深層崩塌為例,中華水土保持學報,42(4): 313-324 (2011)。
21.吳佳郡(2006),「降雨誘發山崩之潛感分析初探」,國立暨南國際大學土木工程學系碩士論文。
22.吳清山、林天祐(2005),教育新詞書(New Dictionary of Education),高等教育文化事業有限公司。
23.吳清山、林天祐(2001)。教育名詞—策略管理。教育資料與研究,41,66。
24.周元浙(2009), 「國家承擔水土保持義務之責任」,軍法專刊。
25.林銘郎、鄭富書、吳俊傑(1996),「新中橫沿線天然災害及成因分析」。
26.林清山(1995),「多變項分析統計法」,東華書局,pp.289-336。
27.林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,國立國立中興大學水土保持學研究所博士論文。
28.林昭遠、林文賜、張力仁(1999),「數值地形模型應用於集水區規劃與整治之研究」,中華水土保持學報,30(2):149-155。
29.林昭遠、林文賜(2000),「集水區地文水文因子自動萃取之研究」,中華水土保持學報,31(3):247-256。
30.林昭遠、吳瑞鵬、林文賜(2001),「921 震災崩塌地植生復育監測與評估」,中華水土保持學報,32(1):59-66。
31.林昭遠(2012)「因應氣候變遷重點集水區保育策略之研究(第一年)成果報告」,水土保持局編印。
32.林昭遠、鄧亞恬、黃文政(2013),「應用環境指標劃定阿里山溪集水區道路沿線崩塌潛勢之研究」,水土保持學報,尚未出刊。
33.林俐玲(1995),「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集。
34.林勝義(2005),「阿里山五彎仔邊坡滑動因子相關性與滑動基準值之初步探討」,國立雲林科技大學營建工程研究所碩士論文。
35.林洧全(2012),「衛星影像判釋技術應用於山崩潛勢分析及風險評估模式建制之研究」,長榮大學土地管理與開發學系碩士論文。
36.林衍承(2009),「廣域山崩潛感分析模型力學-水力參數之逆分析」,國立中央大學應用地質研究所碩士論文。
37.政策前瞻的思維,2010,國立政治大學(NCCU)前瞻社編印。
38.俞佳成(2012),「應用TRIGRS與SHALSTAB程式分析陳有蘭溪集水區邊坡之破壞機率與風險」,中華水土保持學會101年度年會。
39.洪豐偉(2004),「系統動力學為基礎之決策支援系統應用於墾丁南灣海岸地區整合管理之研究」,國立中山大學海洋環境及工程研究所碩士論文。
40.洪明龍(2012),「丹麥新能源政策」,http://km.twenergy.org.tw/DocumentFree/reference_more?id=7。
41.科技部(2013),「氣候變遷第五次評估報告-第一工作小組報告「給決策者摘要」中文版翻譯(審定中版本)」,國科會臺灣氣候變遷推估與資訊平台建置計畫編譯。
42.施雅月、賴錦慧(2008),「資料探勘」,新北市:培生教育出版社。
43.胡毓港(2007),「應用高斯過程建立新中橫公路邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文。
44.袁建中(2007),「科技管理」,雙葉書廊,臺北市。
45.徐義人(1995),「應用水文學」,大中國圖書公司,臺北市。
46.夏禹九、陳萓蓉(2000),「農業非點源汙染模式應用於河川保護帶配置之探討」,中華水土保持學報,30(1):1-12。
47.許晃雄、吳宜昭、周佳、陳正達、陳永明、盧孟明(2011),「臺灣氣候變遷科學報告」,國家科學委員會出版。
48.許晃雄、陳正達、盧孟明、周佳、林李耀(2013)「面對IPCC氣候變遷第五次評估報告,國科會TCCIP計畫團隊的說明」,國科會網頁 http://tccip.ncdr.nat.gov.tw/AR5/tccipClaim.html。
49.莊文星(2009),「莫拉克颱風與高屏溪流域旗山溪(一)旗山_小林峽谷段地貌變遷」,國立自然科學博物館,館訊第291期,P.6。
50.莊智瑋(2010),「環境指標應用於崩塌地植生復育之研究」,國立國立中興大學水土保持學系博士論文。
51.張尊國、余忠賢、徐明霖(1996),「德基水庫集水區非點源污染負荷之研究」,第九屆環境規劃與管理研討會論文集,臺灣大學,P.30~36。
52.張瑞津(1994),「地形學圖研究的概觀」,中等教育,45:pp.16-28。
53.張舜孔(2003),「類神經網路應用在阿里山公路邊坡破壞因子之分析研究」,國立成功大學土木工程學系碩士論文。
54.張紹勳、張紹評、林秀娟(2000),「SPSS For Windows統計分析-初等統計與高等統計」,松崗出版社,臺灣。
55.郭寶錚、陳玉敏(2010),生物統計入門。
56.陳順宇(1998),「多變量分析」,華泰書局。
57.陳宜清(2004),「探討環境敏感指標地圖在海岸資源管理與溢油污染清理之應用性」,第5屆環境管理研討會,南華大學,嘉義。
58.陳彥傑(2004),「臺灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流坡降指標為依據」,國立成功大學地球科學系博士論文。
59.陳述彭、趙英時(1992),「遙感地學分析」,中國文化大學出版部。
60.陳振華(2000),「河川綜合環境品質評估模式之建立與應用-以高屏溪為例」,東華大學自然資源管理研究所碩士論文。
61.陳俊章(2012),「新中橫公路將於莫拉克3週年後蛻變重生」,交通部公路總局-臺灣人@路,第12期,P.6~7。
62.陳怡良,民國98年颱風調查報告-第8號莫拉克(Morakot)颱風(0908)。
63.陳則佑(2011),「應用點估法與TRIGRS程式分析奧萬大道路邊坡之破壞機率」,國立國立中興大學水土保持學系碩士學位論文。
64.國家實驗研究院,「日本第10回科技預測調查之結果速報」,http://i4f.stpi.narl.org.tw/index/article/94。
65.傅粹馨(1975),「羅桑二氏非語文智力測驗之研究(層次E-H)」,國立政治大學教育研究所碩士論文。
66.楊志堅、張家榮(2000),「群集分析介紹,進修通訊年刊」,6:42-49。
67.楊永安(2007),「應用衛星影像進行坡地災害自動判釋與災因分析」,臺灣大學土木工程學程研究所碩士論文。
68.鄒篪生、孫智麗、李宜映(2009),「由各國科技前瞻執行經驗提出我國農業科技前瞻發展規」,台灣經濟研究月刊,32(12)。
69.鄒篪生(2010),「建立政策前瞻預作機制提升國際競爭力」,台灣前途探照燈-政策前瞻與台灣發展論壇。
70.經濟部水利署水利規劃試驗所(2008),「高屏溪治理規劃檢討」。
71.萬鑫森、黃俊義(1981),「臺灣溪北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):57-67。
72.萬鑫森、黃俊義(1989),「臺灣坡地土壤沖蝕」,中華水土保持學報,20(2):17-45。
73.賴明伸(2005),「京都議定書正式生效與加強推廣綠色消費運動」,綠色消費電子報,第32期,http://www.edf.org.tw/News/green
74.20050301.htm)
75.盧惠敏(2010),「莫拉克颱風災後聚落環境復育之規劃」,行政院經濟建設委員會,報告編號(99)037.304,第123-148頁。
76.謝邦昌(1999),「SAS系統在統計分析上之應用」,網路應用暨套裝軟體研討會課程講義,p.1-5。
77.鍾欣翰(2008),「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,國立中央大學應用地質研究所碩士論文
78.譚志豪、許世孟、冀樹勇、蘇泰維、李錦發、費立沅(2009),「流域山崩與水文地質特性之關聯研究」,流域地質與坡地災害研討會論文集。
79.蘇苗彬(1998),集水區坡地安定評估之計量分析方法,中華水土保持學報29(2):105-114。
80.賴炳樹、白仁德(2012),「因應氣候變遷之洪災調適策略規劃」,國立政治大學地政學系,災害防救科技與管理學刊,1(1):81-100。
81.行政院經濟建設委員會(2012),國家氣候變遷調適政策綱領。
82.許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明(2012),「臺灣氣候變遷的關鍵議題」,臺灣醫學,第16卷,第5 期,第459-470頁。
83.國科會(2011),臺灣氣候變遷科學報告2011。
84.陳永明、陳亮全、林李耀(2011),「氣候變遷之災害衝擊與防災調適策略」,國家災害防救科技中心、國立臺灣大學建築與城鄉研究所。
85.林昭遠(1991),「野火影響森林土壤性質之研究」,博士論文,國立國立中興大學植物學研究所。
86.游繁結(2001),「溪谷邊坡崩滑土體之土石流化機制研究」,行政院國家科學委員會專題研究計畫成果報告。
87.游繁結(1987),「土石流之基礎研究(I):土石流發生機制之研究」,中華水土保持學報,第18卷,第2期,第139-150頁。
88.詹錢登(1994),「土石流危險度之評估與預測」,中華水土保持學報,第25卷,第2期,第95-102頁。
89.黃俊德 (1979),「臺灣降雨沖蝕指數的研究」,中華水土保持學報,第10卷,第1期,第127-144頁。

二、英文部份
1.Alexander, S., Volker, G., Heiko, A. (2013), “Heading towards a multimodal city of the future? Multi-stakeholder scenarios for urban mobility”, Technological Forecasting and Social Change, TFS-17835, 21.
2.Alexander, S., Martin, Z., Heiko, A. (2013), “Surface-and deep-level diversity in panel selection - Exploring diversity effects on response behaviour in foresigh”, Technological Forecasting and Social Change, TFS-17749, 16.
3.Anbumozhi, V. (2012a) “Climate Change in the Asia-Pacific: How Countries Can Adapt?”, Workshop on Agricultural Adaptations to Climate Change, held in Nov. 2012, Bangkok, Thailand by Asian Productivity Organization,.
4.Anbumozhi, V. (2012b) “Enhancing the Adaptive Capacity in the Asia and Pacific Region: Opportunities for Innovation and Experimentation”, In book Chapter 24 of “Climate Change in Asia and Pacific”, edited by Anbumozhi, V., Breiling, M., Pathmarajah, S., and Reddy, V.R.
5.Anderson, T. W. (1963), “Asymptotic theory for principal component analysis”, Annals of Mathematical Statistics, 34(1), 122-148.
6.Asian Productivity Organization, APO (2012) Workshop on Agricultural Adaptations to Climate Change, Held in Nov. 2012, Bangkok, Thailand.
7.Atkinson, P. M. and R. Massari. (1998), “Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy”, Computers & Geosciences, Vol.24, 373-385.
8.Ayalew, L. and H. Yamagishi. (2005), “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan”, Geomorphology, Vol.65, 15-31.
9.Baum, R.L., Savage, W.Z. and Godt, J.W. (2002), “TRIGRS - A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis”, U.S. Geological Survey Open-File Report 02-0424.
10.Baum, R.L., Savage, W.Z., and Godt, J.W. (2008) TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0: U.S. Geological Survey Open-File Report, 2008-1159, 75.
11.Bedient, P. B. and W. C. Huber (2002) “Hydrology and Floodplain Analysis 3rd ed”, Prentice-Hall, Inc., New Jersey, USA, pp.394-398.
12.Beven, K. J. and Kirkby, M. J. (1979)", A physically based variable contributing area model of basin hydrology," Hydrol. Sci. Bull., 24(1), 43-69.
13.Breiling, M. (2012) “Valuing Natural Resource Management: Climate Change Adaptation in the European Union”, In book Chapter 5 of “Climate Change in Asia and Pacific”, edited by Anbumozhi, V., Breiling, M., Pathmarajah, S., and Reddy, V.R.
14.Burton, A., Bathurst, J. C. (1998), “Physically based modeling of shallow landslide sediment yield at a catchment scale”, Environmental Geology, 35, 89-99.
15.Cook, C.N., Inayatullah, S., Burgman, M.A., Sutherland, W.J., Wintle, B.A. (2014), “Strategic foresight: how planning for the unpredictable can improve environmental decision-making”, Trends in Ecology and Evolution, 29, 531–541.
16.Cook, C.N., Wintle, B.C., Aldrich, S.C., Wintle, B.A. (2015), “Using Strategic Foresight to Assess Conservation Opportunity”, Conservation Biology, 28, 6, 1474–1483.
17.Changyong, L., Bomi S., Yongtae P. (2015), “An instrument for scenario-based technology strategy roadmap: How to assess the impacts of future changes on organisational plans”, Technological Forecasting and Social Change, 90, 285–301.
18.Hung, C.Y., Lee, W.Y., Wang, D.S. (2013), “Strategic foresight using a modified Delphi with end-user participation: A case study of the iPad''s impact on Taiwan''s PC ecosystem”, Technological Forecasting and Social Change, 80, 485– 497.
19.Cattell, R. B. (1966), “The screen test for the number of factors,” Multivariate Behavioral Research, 1(2): 245-276.
20.Ceccato, P., S. Flasse, and J. Gregoire (2002), “Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications”, Remote Sensing of Environment, Vol.82, pp.198-207.
21.Chang, S.K., Lee, D.H., Wu, J.H., Juang, C.H. (2011), ” Rainfall-based criteria for assessing slump rate of mountainous highway slopes: A case study of slopes along Highway 18 in Alishan”, Taiwan, Engineering Geology, 118, 63-74.
22.Chang, K.T., Chiang, S.H. and Hsu, M.L. (2007), “Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression”, Geomorphology, Vol.89, 335-347.
23.Chauhan, S., Sharma, M. and Arora, M.K. (2010), “Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model”, Landslides, Vol.7, 411-423.
24.Chou, T.Y., Lin, W.T., Lin, C.Y., Chou, W.C., Huang, P.H. (2004), “Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM”, Journal of Hydrology, 287, 49-61.
25.Dai, F.C., Lee,C. F., Tham, L.G., Ng, K.C. and Shum, W. L. (2004), “Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong”, Bull. Eng. Geol. Environ., Vol.63, 315-327.
26.Dai, F.C.and Lee, C.F. (2003), “A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression”, Earth Surf. Process Landforms, Vol.28, 527-545.
27.Delgado, J.A., Groffman, P.M., Nearing, M.A., Goddard, T., Reicosky, D., Lal, R., Kitchen, N.R., Rice, C.W., Towery, D., and Salon, P. (2011), “Conservation practices to mitigate and adapt to climate change”, Journal of Soil and Water Conservation, 66(4), 118A-129A.
28.Dunne, T. and Leopold, L.B. (1978), “Water in environmental planning”, New York: WH Freeman.
29.Evans, I.S., 1972. General Geomorphometry, Derivates of Attitude, and Descriptive Statistics, in Chorley. R.J. (Ed.): Spatial Analysis in Geomorphology: pp.17-90, London: Methuen & Co Ltd.
30.Feinberg, S. (1985) “The analysis of cross-classified categorical data (2nd ed.)”, Cambridge, MA: MIT Press, 198.
31.Foster, G.R., Lane, L.J., Nowlin, J.D., Laflen, J.M. and Young, R.A. (1981), “Estimating erosion and sediment yield on field-sized areas” , Trans. ASAE 24, 1253-1262.
32.Georghiou, L., Harper, J.C., Keenan, M., Miles, I., and Popper, R. (2008), “The Handbook of Technology Foresight: Concepts and Practice. (PRIME Series on Research and Innovation Policy)”, Cheltenham: Edward Elgar Publishing.
33.Gary G., Rashid M., Eve C. (2015), ”Exploring future cityscapes through urban logistics prototyping: a technical viewpoint”, Supply Chain Management: An International Journal, 20(3), 237-248.
34.Gao, B.C. (1996), “NDWI- a normalized difference water index for remote sensing of vegetation liquid water from space”, Remote Sensing of Environment. 58(3), 257-266.
35.Heleen, L.P., Peter, P.J. , Hens, A.C. (2015), ““Cool’’ governance of a ‘‘hot’’ climate issue: public and private responsibilities for the protection of vulnerable citizens against extreme heat. Reg Environ Change, 15, 1065–1079.
36.Wu, H.Y. (2012), “Constructing a strategy map for banking institutions with key performance indicators of the balanced scorecard”, Evaluation and Program Planning, 35, 303–320.
37.Hong Y., Hiura H., Shino K., Sassa K., Semine A., Fukuoka H. and Wang G. (2005), ”The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island”, Japan. Landslides, 2, 97-105.
38.Hotelling, H. (1933), “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, 24, 417-441.
39.Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In ClimateChange 2014: Impacts, Adaptation, and Vulnerability. 2014.
40.IPCC, (2013a): Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
41.IPCC, (2013b): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press.
42.Jon L. (2006), “Current validity of the Delphi method in social sciences. Technological”, Forecasting and Social Change, 73, 467–482.
43.Jenson, S.K., Domingue, J.O. (1988), “Extracting Topographic Structure from Digital Elevation Data for Geographical Information System Analysis”, Photogrammetric Engineering and Remote Sensing, 54(11), 1593- 1600.
44.Johnson, D.E. (1998). “Applied multivariate methods for data analysts”, Pacific Grove, CA: Duxbury Press.
45.Delgado, J.A., Groffman, P.M., Nearing, M.A.,Goddard, T., Reicosky, D., Lal, R., Kitchen, N.R., Rice, C.W., Towery, D. and Salon, P. (2011), “Conservation practices to mitigate and adapt to climate change”, Journal of Soil and Water Conservation, 66(4), 118A-129A; doi:10.2489/jswc.66.4.118A.
46.Oven, K.J., Curtis, S.E., Reaney, S., Riva M., Stewart, M.G., Ohlemüller, R., Dunna, C.E., Nodwell, S., Dominelli, L., Holdenf, R. (2012), “Climate change and health and social care: Defining future hazard, vulnerability and risk for infrastructure systems supporting older people’s health care in England”, Applied Geography, 33, 16-24.
47.Vishnevskiy, K. Karasev, O. and Meissner, D. (2015), “Integrated roadmaps and corporate foresight as tools of innovation management: The case of Russian companies”, Technological Forecasting and Social Change, 90, 433–443.
48.Kasim Y., Ruken E. (2013), “Overlay mapping trend analysis technique and its application in Euphrates Basin, Turkey”, Meteorological Applications, 20, 427–438.
49.Kaiser, H. F. (1960), “The varimax criterion for analytic rotation in factor analysis,” Psychometrika, 23, 187-200.
50.De Benedetto, L., Klemes, J. (2009), “The Environmental Performance Strategy Map: an integrated LCA approach to support the strategic decision-making process”, Journal of Cleaner Production, 17, 900–906.
51.Huang L., Zhang Y., Guo Y., Zhu, D.H., Porter, A.L. (2014),”Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology strategy roadmap”, Technological Forecasting and Social Change, 81, 39–48.
52.Leonidou, L.C., Leonidou, C.N., Palihawadana, D., Hultman, M. (2010), ”Evaluating the green advertising practices of international firms: a trend analysis”, International Marketing Review, 28, 1, 6-33.
53.Lal, R., Delgado, J.A., Groffman,P.M., Millar,N., Dell, C. and Rotz. A. (2011), "Management to mitigate and adapt to climate change." Journal of Soil and Water Conservation 66(4): 276-285.
54.Lane, L.J. (1982), “Development of a procedure to estimate runoff and sediment transport in ephemeral streams,” In recent Developments in the Explanation and Prediction of Erosion and Sediment Yield. 275-282. Proc. Exeter Symp. IAHS Publ. 137.
55.Lee, K.T. and Ho, J.Y. (2009). “Prediction of landslide occurrence based on slope instability analysis and hydrological model simulation”, Journal of Hydrology, 375(3-4), 489-497.
56.Lee, S. and Pradhan, B. (2007), “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models”, Landslides, Vol.4, 31-44.
57.Lee, S. and Min, K. (2001), “Statistical analysis of landslide susceptibility at Yongin, Korea”, Environmental Geology, Vol.40, 1095-1113.
58.Lin, W.T., Chou, W.C., Lin, C.Y., Huang, P.H., Tsai, J.S. (2008), “WinBasin: Using Improved Algorithms and the GIS Technique for Automated Watershed Modeling Analysis from Digital Elevation Models”, International Journal of Geographical Information, 22(1), 47–69.
59.Hapgood, M.A. (2011), “Towards a scientific understanding of the risk from extreme space weather”, Advances in Space Research, 47, 2059–2072.
60.Roy, M., Curry, R., Ellis, G. (2015), “Spatial allocation of material flow analysis in residential developments: a case study of Kildare County, Ireland”, Journal of Environmental Planning and Management, 58, 10, 1749-1769.
61.Mintzberg, H. (1996), “Managing government”, Governing management, 3, 3, 75-&.
62.Carvalho, M.M., Fleury, A., Lopes, A.P. (2013), “An overview of the literature on technology roadmapping (TRM): Contributions and trends”, Technological Forecasting and Social Change, 80, 1418–1437.
63.Mark, D.M., 1975. Geomorphometric Parameters: A Review and Evaluation. Geografiska Annaler. Series A, Physical Geography, 57: pp.165-177.
64.Mark, D.M. (1988), “Network models in geomorphology”, in Modelling Geomorphological Systems, ed. M.G. Anderson, John Wiley.
65.Martz, L.W. and Garbrecht, J. (1998), “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models”, Hydrological Processes, 12, 843-855.
66.Mayoraz, F. and Vulliet, L. (2002), “Neural networks for slope movement prediction”, The International Journal of Geomechanics, 2(2), 153–173.
67.Grossmann M. and Dietrich O. (2012), “Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany)”, Water Resour Manage, 26, 2081–2108.
68.National Hurricane Center (2005), National Climatic Data Center USA. Hurricane Katrina.
69.Raford, N. (2015) “Online foresight platforms: Evidence for their impact on scenario planning & strategic foresight”, Technological Forecasting and Social Change, 97, 65–76.
70.Nefeslioglu H.A., Duman, T.Y., and Durmaz, S. (2008) "Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey)", Geomorphology, 94(3-4), 401-418.
71.Noori, R., Sabahi, M.S., Karbassi, A.R., Baghvand, A., Zadeh, H. T. (2010), “Multivariate statistical analysis of surface water quality based on correlations and variations in the data set”, Desalination, 260, 129-136.
72.Pearson, K. (1901), “On lines and planes of closest fit to systems of points in spaces,” Philosoghical Magazine, Series, 6(2):559-572.
73.Ecken, P., Gnatzy, T., von der Gracht, H.A. (2011), “Desirability bias in foresight: Consequences for decision quality based on Delphi results”, Technological Forecasting and Social Change, 78, 1654–1670.
74.Lu, Q.C., Zhang, J.Y., Peng, Z.R., Rahman, A.B.M.S. (2014), “Inter-city travel behaviour adaptation to extreme weather events”, Journal of Transport Geography, 41,148–153.
75.Hill, R., Davies, J., Bohnet, I.C., Robinson, C.J., Maclean, K., Pert, P.L. (2015), “Collaboration mobilises institutions with scale-dependent comparative advantage in landscape-scale biodiversity conservation”, Environmental science and policy, 51, 267-277.
76.Phaal, R., Farrukh, C.J.P., Probert, D.R. (2004), “Technology strategy roadmap-A planning framework for evolution and revolution”, Technological Forecasting and Social Change, 71, 5–26.
77.Richards, P.L. and Brenner, A. (2004), “Delineating Source Areas for Runoff in Depressional Landscapes; Implications for Hydrologic Modeling”, Journal of Great Lakes Research,30,9-21.
78.Richards, P.L. and Grimm, R. (2005), “Depression storage in land uses common to the fingerlakes region”, 1st Annual Conference of the Finger Lakes Institute, Nov. 10, 2005; Geneva NY.
79.Pratsinis, S.E., Zeldin, M.D. and Ellis, E.C. (1988), “Source resolution of the fine carbonaceous aerosol by principal component-stepwise regression analysis”, Environmental Science and Technology, 22, 212-216.
80.McDonald, S.L., Gallagher, D.R. (2015), “A Story About People and Porpoises: Consensus-Based Decision Making in the Shadow of Political Action”, Environmental Management, 56, 814–821.
81.Birko, S., Dove, E.S., Oumlzdemir, V. (2015), “Evaluation of Nine Consensus Indices in Delphi Foresight Research and Their Dependency on Delphi Survey Characteristics: A Simulation Study and Debate on Delphi Design and Interpretation”, Plos One, 10(8), e0135162.
82.Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., Michael, J.A. (2006), “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy”, Landslides, 3(3), 181-194.
83.Soil and Water Conservation Society (2007), “Planning for Extremes”, A Report Form a Soil and Water Conservation Society Workshop Held in Milwaukee, Wisconsin, November 1-3, 2006. Published by Soil and Water Conservation Society.
84.Sorensen, R., Zinko, U., Seibert, J. (2006), “On the calculation of the topographic wetness index: evaluation of different methods based on field observations,” Hydrology and Earth System Sciences, 10(1), 101-112.
85.Sudo, T. (2012), “Current Status of Adaptation Planning in the Region”. In book Chapter 24 of “Climate Change in Asia and Pacific”, edited by Anbumozhi, V., Breiling, M., Pathmarajah, S., and Reddy, V.R.
86.Suzuki, H. and Matsuo, M. (1988), “Procedure of Slope Failure Prediction During Rainfall Based On the BackAnalysis of Actual Case Records”, Soil And Foundations, 28(3), 51-63.
87.Gnatzy, T., Warth, J., von der Gracht, H., Darkow, I.L. (2011), “Validating an innovative real-time Delphi approach - A methodological comparison between real-time and conventional Delphi studies”, Technological Forecasting and Social Change, 78, 1681–1694.
88.Yoda, T. (2011), “Perceptions of domain experts on impact of foresight on policy making: The case of Japan”, Technological Forecasting and Social Change, 78, 431–447.
89.Thornthwaite, C.W. (1948), “An approach toward a rational classification of climate”, Geographical Review, 38(1): 55-94.
90.Thornthwaite, C.W. and Mather, J.R. (1955), “The water balance. Publications in climatology”, Drexel Institute of Technology Laboratory of Climatology, 8(1), 1-76.
91.United Nations Environment Programme (UNEP) (2012), 21 Issues for the 21st Century: Result of the UNEP Foresight Process on Emerging Environmental Issues, 2012, 56.
92.Verrios, S., Zygouri, V. and Kokkalas, S. (2004), “Morphotectonic analysis in the ELIKI fault zone”, Bulletin of the Geological Society of Greece vol. XXXVI, 1706-1715.
93.William R. Travis (2014), “Weather and climate extremes: Pacemakers of adaptation?”, Weather and Climate Extremes, 5-6, 29–39.
94.Schwerdtner, W., Siebert, R., Busse, M., Freisinger, U.B. (2015), “Regional Open Innovation Roadmapping: A New Framework for Innovation-Based Regional Development”, Sustainability, 7, 2301-2321.
95.Wanielista, M., Kersten, R. and Eaglin, R. (1997), “Hydrology: Water Quantity and Quality Control 2nd Edition”, John Wiley &Sons, Inc., New York, USA, pp.205-264.
96.Wilson, J.P., Gallant, J.C. (2000), “Terrain analysis : Principles and Applications,” John Wiley & Sons, Inc., 51-58.
97.Wischmeier, W.H. and Smith D.D. (1965), “Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains,” Agricultural Handbook 282, Agricultural Research Service, United States Department of Agriculture.
98.Wishmeier, W.H. and Smith D.D. (1978), “Predicting Rainfall erosion losses,” Agricultural Handbook 537, Agricultural Research Service, United States Department of Agriculture.
99.Al-Saleh, Y.M., Vidican, G., Natarajan, L., Theeyattuparampil, V.V. (2012), “Carbon capture, utilisation and storage scenarios for the Gulf Cooperation Council region: A Delphi-based foresight study” Futures, 44, 105–115.
100.Yang, S.R., Shen, C.W., Huang, C.M., Lee, C.T., Cheng, C.T., Chen, C.Y. (2011), “Prediction of Mountain Road Closure Due to Rainfall-Induced Landslides”, Journal of Performance of Constructed Facilities, 26(2), 197-202.
101.Young, R.A., Onstad, C.A., Bosch, D.D. and Anderson, W.P. (1989), “AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds”, Journal of Soil and Water Conservation. 44(2), 168-173.
102.Zaitchik, B.F., van Es, H.M. (2003), “Applying a GIS slope stability model to site-specific landslide prevention in Honduras,” Journal of Soil and Water Conservation, 58(1), 45-53.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top