跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊乃川
研究生(外文):Nai Chuan Chuang
論文名稱:以沉澱塗佈法開發能在還原氣氛中燒結之X7R介電陶瓷配方粉體
論文名稱(外文):Development of X7R Dielectric Powder Formulation for Reducing Atmosphere Sintering Using Precipitation Coating Method
指導教授:宋志剛
指導教授(外文):Jakob Soong
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:112
中文關鍵詞:積層陶瓷電容器還原氣氛共沉塗佈卑金屬電極稀土元素
外文關鍵詞:MLCCsreducing atmrspherecoprecipitation coatingbase metalrare-earth elementX7R
相關次數:
  • 被引用被引用:0
  • 點閱點閱:828
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為提高單位體積電容值,積層陶瓷電容器(multilayer ceramic capacitors, MLCCs)須使用次微米或奈米晶粒大小之鈦酸鋇粉體,在燒結時控制晶粒之尺寸,使其能降低有效介電質層(active dielectric layer,AD)之厚度,提高堆積介電質層數,而提升其單位體積之電容值。積層陶瓷電容器中之X7R配方有平整之電容值對溫度之變化率,在-55℃∼125℃間,電容值變化率在±15﹪內、而具3000∼4000介電常數,適用於薄介電層高層數之積層陶瓷電容器之製作。本研究以0.3∼0.5μm次微米鈦酸鋇為介電質材料,以添加不同稀土元素及鎂(Mg)、鎳(Ni)等,以沉澱塗佈法,開發X7R配方粉體,且具施體受體之複合體結構,得以能在還原氣氛中燒結用以製作卑金屬電極之積層陶瓷電容器(Base Metal Electrode Multilayer Ceramic Capacitor,BME MLCC)
研究結果顯示,當鉺(Er)、鎂(Mg)摻雜量分別為2.0mol.﹪時,在1350℃空氣中燒結持溫3小時,其電容溫度係數接近EIA之X7R規格,介電常數約為4000,晶粒具core-shell結構。添加不同稀土元素配方粉體,居理溫度(Curie temperature,Tc)會隨添加量增加而往低溫方向移動。添加鑭(La)、釤(Sm)元素其散逸因子(Dissipation factor)低於添加鉺(Er)、鏑(Dy)元素,而絕緣電阻(Insulation resistance)高於添加鉺(Er)、鏑(Dy)元素之配方成分。
粉體配方於還原氣氛中燒結,其電容溫度係數曲線在低氧分壓有介電峰(dielectric peak)出現而有異於在空氣中燒結之配方粉體,且因還原氣氛燒結,使燒結緻密、孔隙率低,散逸因子高於空氣中燒結之配方粉體。
積層陶瓷電容器採用鎳(Ni)為主之內電極材料,在燒結時鎳(Ni)會擴散至有效介電層內而影響其電性。故添加鎳(Ni)元素於配方成分中探討其在燒結時、晶粒成長及其絕緣電阻之關係。
將介電性質接近EIA之X7R規格之配方粉體製作卑金屬積層陶瓷電容器元件,觀察其顯微結構、介電性質及電極與有效介電層間之作用。

In order to increase the capacitance per unit volume, the multilayer ceramic capacitors (MLCCs) have to adopt the using of sub-micron or nano-sized barium titanate powders to control the grain size during sintering to decrease the thickness of the active layer increase the number of the dielectric layers, and the packing density of capacitance per unit volume the capacitance is increasing. X7R is dielectric formulation the temperature coefficient of capacitor are within ±15﹪between the temperature range -55℃∼125℃ and the dielectric constant 3000∼4000, is suitable to be used to thin AD high number of layers MLCC fabrication. In this study, 0.3∼0.5μm sub-micron barium titanate powders was adopted to synthesize the dielectric formulation of X7R to form the complex structure of donor and acceptor using the coprecipitation coating method and manufacture the base metal electrode multilayer ceramic capacitors from the dielectric powder that are suitable to sinter in reducing atmosphere.
It is observe that the concentration of dopant equals to 2mol.﹪of Er、Mg , the temperature coefficient of capacitor is close to the EIA requirement of X7R, dielectric constant 4000, and the grain exhibits core-shell structure, the Curie temperature is toward to the direction of lower temperature. The dissipation factor of sample added La、Sm is lower than the sample added Er、Dy and the insulation resistance is higher than the sample added Er、Dy.
There is a dielectric peak of the temperature coefficient of capacitor at low oxygen partial pressure when sample sintering in reducing atmosphere that is different when the sample sintering in air. The densification of the sample sintering in reducing atmosphere is the best than the sample sintering in air.
It is the influence factor of the electrical property that the nickel diffuses into the active dielectric layers in MLCCs, so that, we add the nickel element to the dielectric powder to investigate the relation between the sintering, grain growth, and insulation resistance.
We use the dielectric powders that the electrical properties close to the EIA requirement of X7R, to manufacture the devices of base metal electrode multilayer ceramic capacitors, and investigate the microstructure, dielectric properties and the relation between the electrodes and the active dielectric layers.

目 錄
中文摘要………………………………………………………………………….Ⅰ
英文摘要…………………………………………………………….……………Ⅲ
致謝………………………………………………………………………………..V
目錄………………………………………………………………………………VI
圖目錄……………………………………………………………………………IX
表目錄…………………………………………………………………………...XV
第一章 緒 論……………………………………………………………………..1
1-1 前 言…………………………………………………………………...1
1-2 本研究的重點及目的………………………………………………….2
第二章 理論基礎及文獻回顧……………………………………………….…...3
2-1 積層陶瓷電容器的沿革與發展…………………………………….…...3
2-2 卑金屬電極與積層陶瓷電容器的發展…………………………….…...6
2-3 添加稀土元素對以BaTiO3為基之配方粉體之介電性質的影響……...9
2-3-1 介電性質與顯微結構的影響………………………………….……9
2-3-2晶粒核(grain core)-晶粒殼(grain shell)形成之行為……………..10
2-3-3 位置取代(site occupancy)之探討………………………………...12
2-4 積層陶瓷電容器的分類………………………………………………..14
2-4-1 高介電常數Y5V之積層陶瓷電容器………………………..……14
2-4-2 中介電常數X7R之積層陶瓷電容器……………………………..14
2-4-3 溫度補償型NPO之積層陶瓷電容器……………………………..15
第三章 實驗方法及步驟………………………………………………….…….24
3-1 實驗流程及樣品準備…………………………………………….…...24
3-2 性質測試………………………………………………………….…...25
3-2-1 粉末顯微結構……………………………………………….……25
3-2-2 X光繞射分析…………………………………………………….25
3-2-3 密度量測…………………………………………………….……26
3-2-4 介電性質量測…………………………………………………….26
3-2-5 晶粒大小之計算………………………………………………….26
3-2-6 氣體流量器(Mass Flow Meter)控制……………………….……27
3-2-7 氧分壓控制……………………………………………………….27
3-2-8 SEM顯微結構分析………………………………………….…...28
3-2-9 TEM顯微結構分析………………………………………….…...28
3-2-10 EPMA 分析……………………………………………………..29
第四章 結果與討論……………………………………………………………..36
4-1 Er和Mg添加入BT在空氣中燒結性質……………………………..36
4-1-1 結晶結構分析……………………………………………….…...36
4-1-2 不同燒結條件對介電性質的影響………………………….…...36
4-1-3 散逸因子分析……………………………………………….…...37
4-1-4 絕緣電阻分析……………………………………………….…...38
4-1-5 顯微結構分析……………………………………………….…...39
4-2 不同稀土元素和Mg添加入BT在空氣中燒結性質………………...40
4-2-1 結晶結構分析……………………………………………….…...40
4-2-2 不同稀土元素添加對介電性質的影響…………………….…...40
4-2-3 散逸因子分析……………………………………………….…...43
4-2-4 絕緣電阻分析……………………………………………….…...43
4-2-5 顯微結構分析……………………………………………….…...44
4-3 添加Ni對介電穩定的影響…………………………………………..45
4-4 還原氣氛燒結性質……………………………………………..…….46
4-4-1 還原氣氛燒結對介電性質的影響………………………….…...46
4-4-2 散逸因子分析……………………………………………….…...48
4-4-3 絕緣電阻分析……………………………………………….…...48
4-4-4 顯微結構分析……………………………………………….…...49
4-4-5 討論在空氣中燒結及在還原氣氛中燒結之異同………….…...50
4-4-6 添加Ni對介電穩定的影響……………………………………...51
4-5 積層陶瓷電容器(MLCC)元件之測試………………………………53
4-5-1 還原氣氛燒結對積層陶瓷電容器元件之介電性質的影響……53
4-5-2 散逸因子分析……………………………………………………54
4-5-3 絕緣電阻分析……………………………………………………54
4-4-4 顯微結構分析……………………………………………………54
4-5-5 討論積層陶瓷電容器元件與Disk的異同……………………...55
第五章 結論……………………………………………………………………103
第六章 參考文獻………………………………………………………………106

參考文獻
1. Hiroshi Kishi, Youichi Mizuno, Hirokazu Chazono, “Base-Metal Electrode-Multilayer Ceramic capacitors: Past, Present, and Future Perspectives,” Jpn. J Appl. Phys, Vol. 42, No. 1, pp. 1-15, 2003.
2. 陳聰文, “積層陶瓷電容器製程簡介,” 工業材料 108期, pp. 72-80, 1995年.
3. F. K. Hennings, “Multilayer Ceramic Capacitors With Base metal Electrodes,” Philips Research Laboratories, pp. 135-138, 2001.
4. Sea-Fue Wang, “Dielecric Properties of Fine-Grained Barium Titanate Based X7R Material,” J. Am. Ceram. Soc., Vol. 82, No.10, pp. 2677-82, 1999.
5. Y. Park, Y.H. Kim, H.G. Kim, “The effect of grain size on dielectric behavior of BaTiO3 base X7R material,” Material Letters, Vol. 28, pp. 101-106, 1996.
6. G. Arlt, D. Hennings, G. de with, “Dielectric properties of fine-grained barium titanate ceramic,” J. Appl. Phys, Vol. 58, No. 4, pp. 1619-1625, 1985.
7. Heinze Ragossing, Adalbert Feltz, “Permittivity and the Form Factor of BaTiO3 and Related Powders,” Journal of the European Ceramic Society, Vol. 18, pp. 1669-1677, 1998.
8. H. Mostaghaci, R. J. Brook, “Production of Dense and Fine Grain Size BaTiO3 by Fast Firing,” Trans. J. Br. Ceram. Soc., Vol. 82, No. 5, pp. 167-170, 1983.
9. Nobuyuki Wada, Hidehiko Tanaka, Yukio Hamaji, Yukio Sakabe, “Microstructure and Dielectric Properties of Fine-Grained BaTiO3 Ceramics,” Jpn. J. Appl. Phys, Vol. 35, pp. 5141-514, 1996.
10. U. Kumar, S.F. Wang, J.P. Dougherty, “Preparatoin of Dense Ultra-Fine Grain Barium Titanate-Base Ceramic,” Material Research Laborarory, pp. 70-73, 1992.
11. Hong Cai, Zhilun Gui, Longtu Li, “Low-sintering composite multilayer ceramic capacitors with X7R specification,” Material Science and Engineering, Vol. 83, pp. 137-141, 2001.
12. Ruzhong Zuo, Longtu Li, Zhilun Gui, “Interfacial development and microstructural imperfection of multilayer ceramic chips with Ag/Pd electrodes,” Ceramics International, Vol. 27, pp. 889-893, 2001.
13. Zhilun Gui, Yu Wang, Longtu Li, “Lead-Base Relaxor Ferroelectric Ceramics For High Performance Low Firing MLCs,” Dept. of Material Science & Engineering, pp. 409-412, 1996.
14. Ruzhong Zuo, Longtu Li,Yin Tang, Zhilun Gui, “Characteristics and effects of interfacial intrerdiffusion in composite multilayer ceramic capacitors,” Material Chemistry and Physics, Vol. 69, pp. 230-235, 2001.
15. Ruzhong Zuo, Longtu Li, Chengxiang Ji, Zhilun Gui, “A new type of dielectric composite with X7R characteristics and high dielectric constant,” Material Letters, Vol. 48, pp. 26-30, 2001.
16. D. M. Smyth, “Multilayer Ceramic Cpacitors with Base Metal Electrodes,” Material Research Center, pp. 369-373, 2001.
17. Detlev F. K. Hennings, “Dielectric material for sintering in reducing atmospheres,” Journal of the European Ceramic Society, Vol. 21, pp. 1637-1642, 2001.
18. Atsushi-Ito, Noboru-Yoshimura, Junichi-Ideguchi, Tadashi-Ogasawara, “Electrical Conduction of Multi-layer Ceramic Capacitor,” Proceedings of the 3rd International Conference on Properties and Applications of Dielectrics Material, pp. 173-176, 1991.
19. Yuanxiang Zhou, Zixia Cheng, Ping Yan, Xidong Liang, Zhicheng Guan, “ DC Breakdown Phenomena in BaTiO3-Based Multilayer Ceramic Capacitors,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 67-70, 2001.
20. Hiroshi Kishi, Noriyuki Kohzu, Yoshiaki Iguchi, Junichi Sugino, Makoto Kato, Hitoshi Ohsato, Takashi Okuda, “Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3,” Journal of the European Ceramic Society, Vol. 21, pp. 1643-1647, 2001.
21. Tao Li, Longtu Li, Jianqiang Zhao, Zhilun Gui, “Modulation effect of Mn2+ on dielectric properties of BaTiO3-based X7R materials,” Material letters, Vol. 44, pp. 1-5, 2000.
22. W. Grogger, F. Hofer, P. Warbichler, A. Feltz, M. Ottlinger, “Imaging of the Core-Shell Structure of Doped BaTiO3 Ceramics by Energy Filtering TEM,” Phys. Stat. Sol., pp. 315-325, 1998.
23. Christof Metzmacher, Knuth Albertsen, “Microstructural Investigations of Barium Titanate-Based Material for Base Metal Electrode Ceramic Multilayer Capacitor,” J. Am. Ceram. Soc., Vol. 84, No. 4, pp. 821-826, 2001.
24. F. Azough, R. Al-Saffar, R. Freer, “A Transmission Electron Microscope Study of Commercial X7R-Type Multilayer Ceramic Capacitors,” Journal of the European Ceramic Society, Vol. 18, pp. 751-758, 1998.
25. Seok-Hyun Yoon, Je-Hun Lee, Doh-Yoen Kim, “Core-Shell Structure of Acceptor-Rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., Vol. 85, No. 12, pp. 3111-3113, 2002.
26. Youichi Mizuno, Tomoya Hagiwara, Hirokazu Chazono, Hiroshi Kishi, “Effect of milling process on core-shell microstrucrure and electrical properties for BaTiO3-based Ni-MLCC,” Journal of the European Ceramics Society, Vol. 21, pp. 1649-1652, 2001.
27. M. Reibold, H. J. Gesemann, A. Schonecker, D. Schulze, “Core-Shell-Structures in Multiphase Dielectric Ceramics,” Cryst. Res. Technol., Vol. 33, pp. 257-266, 1998.
28. Toru Nagai, Kenji Iijima, “Effect of MgO Dopping on the phase Transformations of BaTiO3,” J. Am. Ceram. Soc., Vol.83, No. 1, pp. 107-112, 2000.
29. Hiroshi Kishi, Noriyuki Kohzu, Junichi Sugino, Hitoshi Ohsato, Yoshiaki Iguchi, Takashi Okuda, “The Effect of Rare-earth (La, Sm, Dy, Do and Er) and Mg on the Microstructure in BaTiO3,” Journal of the European Ceramic Society, Vol. 19, pp. 1043-1046, 1999.
30. Yukio Sakabe, Yukio Hamaji, Harunobu Sano, Nobuyuki Wada, “Effect of Rare-Earth Oxides on the Reliability of X7R Dielectrics,” Jpn. J. Appl. Phys., Vol. 41, pp. 5668-5673, 2002.
31. Hiroshi Kishi, Noriyuki Kohzu, Youichi Mizuno, Yoshiaki Iguchi, Junichi Sugino, Hitoshi Ohsato, Takashi Okuda, “Effect of Occupation Sites of Rare-Earth Elements on the Microstructure in BaTiO3,” Jpn. J. Appl. Phys., Vol. 38, pp. 5452-5456, 1999.
32. Atsushi Hitomi, Ian Scrymgeour, Clive A. Randall, “Site occupancy of Rare-Earth Cations in BaTiO3,” Jpn. J. Appl. Phys., Vol. 40, pp. 255-258, 2001.
33. Cheng-Jien Peng, Hong-Yang Lu, “Compensation Effect in semiconducting Barium Titanate,” J. Am. Ceram. Soc., Vol. 71, No. 1, pp. C-44-C46, 1998.
34. S. M. Komienko, I. P. Bykov, M. D. Glinchuk, V. V. Laguta, “Impurity centers in a Barium tutanate ceramic dopes with rare-earth ions,” Physics of the Solid State, Vol. 41, No. 10, pp. 1688-1692, 1999.
35. Kazutaka Watanabe, Hitoshi Ohsato, Hiroshi Kishi, Yoshikazu Okino, Noriyuki Kohzu, Yoshiaki Iguchi, Takashi Okuda, “Solubility of La-Mg and La-Al in BaTiO3,” Solid State Ionics, Vol. 108, pp. 129-135, 1998.
36. Ming-Hong Lin, Hong-Yang Lu, “Site-occupancy of yttrium as a dopant in BaO-excess BaTiO3,” Materials Science and Engineering, Vol. 335, pp. 101-108, 2002.
37. Maria Teresa Buscaglia, Massimo Viviani, Vincenzo Buscaglia, Carlo Bottino, “Incorporation of Er3+ into BaTiO3,” J. Am. Ceram. Soc., Vol. 85, No. 6, pp. 1569-1576, 2002.
38. Jin Hyun Hwang, Sang Keun Choi, Young Ho Han, “Dielectric properties of BaTiO3 Codoped with Er2O3 and MgO,” Jpn. J. Appl. Phys., Vol. 40, pp. 4952-4955, 2001.
39. J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, “Reliability of multilayer ceramic capacitors with nickel electrodes,” Journal of Power Sources, Vol. 60, pp. 199-203, 1996.
40. David I. Spang, Ian Burn, Ahmad Safari, “Reduction Resistant High Purity BaTiO3 for Base Metal Compatibility,” pp. 809-812, 1996.
41. H. T. Langhammer, Q. M. Song, H. P. Abicht, “Investigation of the sintering of barium titanate ceramics by oxygen coulometry,” Journal of the European Ceramic Society, Vol. 21, pp. 1893-1897, 2001.
42. Hans Theo Langhammer, Quan Ming Song, Karl-Heinz Felgner, Hans-Peter Abicht, “Investigations on the defect chemistry and the sintering of barium titanate ceramics by oxygen coulometry,” Solid State Sciences, Vol. 4, pp. 197-203, 2002.
43. James s. Reed, Principles to Ceramics Processing, John Wiley & Sons, Inc., New York, 1995.
44. Makoto Kuwabara, Hirofumi Matsuda, “Shift of the Curie Point of Barium Titanate Ceramics with Sintering Temperature,” J. Am. Ceram. Soc., Vol. 80, No. 10, pp. 2590-2596, 1997.
45. D. Voltzke, H. P. Abicht, “Mechanistic investigations on the sintering of BaTiO3 ceramics,” Journal of Material Science Letters, Vol. 19, pp. 1951-1953, 2000.
46. M. B. Holmes, V. A. McCrohan, W. Y. Howng, “Rate-controlled sintering of semiconducting BaTiO3 containing calcium,” Advance in Ceramic, Vol. 7, pp. 146-155.
47. 葉耿岳, 鑭添加鈦酸鋇基陶瓷的燒結行為及介電性質之研究, 成功大學論文, 2001年.
48. Tetsuhiro Takahashi, Yuichi Nakano, Hironari Shoji, Haruhiko Matsushita, Hiroshi Ogawa, Akira Onoe, Hideyuki Kanai, Yohachi Yamashita, “Effect of additives on the sintering behavior of the Ni internal electrode of BaTiO3-based multilayer ceramic capacitors,” pp. 575-578, 1998.
49. Yong Wang, Longtu Li, Jianquan Qi, Zhenwei Ma, Jiangli Cao, Zhilun Gui, “Nickel diffusion in base-metal-electrode MLCCs,” Material Science and Engineering, Vol. 99, pp. 378-381, 2003.
50. W. H. Tzing, W. H. Tuan, H. L. Lin, “The effect of microstructure on the electrical properties of NiO-doped BaTiO3,” Ceramics International, Vol. 25, pp. 425-430, 1999.
51. N. Halder, D. Chattopadhyay, A. Das Sharma, D. Saha, A. Sen, H. S. Maiti, “Effect of sintering atmosphere on the dielectric properties of barium titanate based capacitors,” Material Research Bulletin, Vol. 36, pp. 905-913, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top