跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王浩翔
研究生(外文):Hao-Hsiang Wang
論文名稱:應用多準則決策及重新規劃法於投資組合
論文名稱(外文):Multiple Criteria Decision Making and De Novo Programming in Portfolio Selection
指導教授:余菁蓉余菁蓉引用關係
指導教授(外文):Jing Rung Yu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:64
中文關鍵詞:均異模型融券行為重新規劃法多目標最佳化
外文關鍵詞:Mean-variance modelshort sellingDe Novo programmingmultiple criteria optimization
相關次數:
  • 被引用被引用:4
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:1
Markowitz(1952)提出平均數-變異數投資組合模型架構(Mean-Variance Portfolio Framework),融券行為卻無法直接利用此模型,且目前有關股票信用交易之相關研究大多偏重於買進持有(Long position)之探討,鮮少著重融券放空(Short position)之行為的研究。因此,本研究提出四個模式,以MV模型為基礎,並且放寬融券行為的限制做一應用。第一、即允許融券行為,期望為投資組合帶來較高的收益,但希望降低融券的支數,進而降低融券行為本身所伴隨的高風險特性;第二、在考量融券行為下,進一步降低融券在投資組合中的比例;第三、加入了重新規劃法(De Novo programming),能提供為消除獲利與風險的衝突而重新調整預算,使所得投資組合將能提供更臻完善的選股策略;第四,將獲利、風險、融券支數和全部選股支數視為四個準則,利用多目標規劃方式同時滿足這四個準則,以提供一個多目標最佳化的投資組合。最後將會以兩個台灣股票市場的資料集作為驗證,由分析結果顯示,所求出的投資組合不但都能達成上述目標,並且能藉由加入融券行為而提升獲利、分擔風險,為提供投資人更精確資訊的投資分析工具。
In 1952, Markowitz proposed the Mean-variance model (MV-model) without considering short selling. Therefore, most researches have focused only on the effect of long position but paid less attention on the behavior of short selling. To cope with the short selling issue, this research proposes four models based on MV-model which releases the limitation of short selling. First, short selling is incorporated into the MV-model. However, short selling is a good hedging tool but with high variance. Thus the number of short selling in the portfolio selection is minimized. Second, under considering the short selling in the portfolio selection, the minimization of proportion of short selling is further considered in the model. Third, in order to eliminate the trade-off between return and risk, the concept of De Novo programming is applied in the portfolio selection model. Hence, the proposed portfolio would show the least budget needed to achieve these two goals at once. Fourth, return, risk, number of sold short, and number of total selected securities are viewed as four criteria to be optimized through multiple objective programming. Two data sets are tested to verify these four models which can choose a portfolio selection effectively under considering short selling.
摘要 Ⅰ
Abstract Ⅱ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅶ
List of Appendices Ⅷ
Chaper 1 Introduction 1
1.1 Background and Motivation 1
1.2 Organization of the Thesis 3
Chapter 2 Related Models 5
2.1 Mean-variance model 5
2.2 Short Selling 8
2.3 De Novo Programming 11
2.4 Multiple Criteria Optimization 18
Chapter 3 The Proposed Models 22
3.1 Minimization of Short Selling 22
3.2 Minimization of proportion of Short Selling 24
3.3 De Novo Programming for Portfolio Selection with Short Selling 26
3.4 Multiple Criteria Optimization for Portfolio Selection with Short Selling 27
Chapter 4 Examples 31
4.1 Model 1: Testing result by using data set 1 37
4.2 Model 1: Testing result by using data set 2 38
4.3 Model 2: Testing result by using data set 1 39
4.4 Model 2: Testing result by using data set 2 40
4.5 Model 3: Testing result by using data set 1 42
4.6 Model 3: Testing result by using data set 2 44
4.7 Model 4: Testing result by using data set 1 46
4.8 Model 4: Testing result by using data set 2 47
4.9 Complexity 49
Chapter 5 Conclusion and Future Research 51
5.1 Conclusion 51
5.2 Fututre Research 52
References 54
Appendix 57
1.Bouri A., Martel J.M. and Chabchoub H. (2002). A Multi-criterion Approach for Selecting Attractive Portfolio. Journal of Multi-Criteria Decision Analysis 11(4), 269-277.
2.Ehrgott M., Klamroth K., and Schwehm C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research 155, 752-770.
3.Geoffrey P. (2002). Short sales restrictions, dilution and the pricing of rights issues on the Singapore Stock Exchange. Pacific-basin Finance Journal 10, 141-162.
4.Hallerbach W., Ning H., Soppe A., and Spronk J. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research 153, 517-529.
5.Hallerbach W. and Spronk J. (2002). The Relevance of MCDM for Financial Decisions. Journal of Multi-Criteria Decision Analysis 11, 187-195.
6.Huang J. J., Tzeng G. H., and Ong C. S. (2006). A novel algorithm for uncertain portfolio selection, Applied Mathematics and Computation 173, 350-359.
7.Huang J. J., Tzeng G. H., and Ong C. S. (2005). Motivation and Resource-Allocation for Strategic Alliances through the De Novo Perspective. Mathematical and Computer Modeling 41, 71-72.
8.James J. A., Stephen E. C., and Michael G. F. (2003). A Close Look at Short Selling on Nasdaq. Financial Analysts Journal 59(6), 66-74.
9.Kim W. H. (1996). Short-sales restrictions and volatility - the case of the Stock Exchange of Singapore. Pacific-basin Finance Journal 4, 377-391.
10.Kwan C.Y. (1995). Optimal portfolio selection under institutional procedures for short selling. Journal of Banking and Finance 19, 871-889.
11.Lee E.S. and Li R. J. (1993). Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets and Systems 53, 275-288.
12.Lin C.M., Huang J. J., Gen M., and Tzeng G. H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation 175, 1139-1146.
13.Markowiz H. (1952). Portfolio selection. Journal of Finance 7 (1), 77-91.
14.Ong C. S., Huang J. J., and Tzeng G. H. (2005). A novel hybrid model for portfolio selection. Applied Mathematics and Computation 169, 1195-1210.
15.Peter K. (1998). The capital gain lock-in effect with short sales constraints. Journal of Banking and Finance 22, 1533-1558.
16.Raymond W. S. and Yiuman T. (2001). A note on International Portfolio Diversification with Short Selling. Review of Quantitative Finance and Accounting 16(4), 311-321.
17.Spronk J. and Hallerbach W. (1997). Financial modeling: Where to go? With an illustration for portfolio selection. European Journal of Operational Research 99, 113-125.
18.Spronk J., Hallerbach W., Costa E. and Soares J.O. (2004). A multicriteria model for portfolio management. The European Journal of Finance 10, 198-211.
19.Sun W. G. and Wang C.F. (2006). The mean-variance investment problem in a constrained financial market. Journal of Mathematical Economics 42, 885-895.
20.White, J.A. (1990). More institutional investors selling short: but tactic is part of wider strategy, Wall Street Journal 7, 493-501.
21.Woolridge J. R. and Dickinson A. (1994). Short Selling and Common Stock Prices. Financial Analysts Journal 50(1), 20-28.
22.Zeleny, M. (1986). Optimal system design with multiple criteria: De Novo programming approach. Engineering Costs and Production Economics 10(2), 89-94.
23.Zeleny M. (1990). Optimal given system vs. designing optimal system: The De Novo programming approach. International Journal of General System 17(3), 295-307.
24.Zopounidis C. (1999). Multicriteria decision aid in financial management. European Journal of Operational Research 19(2), 404-415.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top