跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂彥辰
研究生(外文):LU, YEN-CHEN
論文名稱:PP/磺化二氧化矽奈米顆粒複合材料
論文名稱(外文):The Study of PP/Sulfonated SiO2 Nano-particles Composite Materials
指導教授:蘇順發蘇順發引用關係
指導教授(外文):SU, SHUN-FUA
口試委員:蘇順發林有銘陳忠吾
口試委員(外文):SU, SHUN-FUALIN, YU-MINGCHEN, CHUNG-WU
口試日期:2017-01-16
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:溶膠-凝膠法二氧化矽奈米顆粒磺酸化質子交換膜燃料電池
外文關鍵詞:sol - gel methodsilica nanoparticlessulfonationproton exchange membranefuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶膠-凝膠法製備二氧化矽奈米顆粒,再經磺酸化改質流程,製備磺酸化之二氧化矽奈米顆粒與MAH-PP用塑譜儀做混煉動作,再用複動式油壓成型機製備成複合膜,探討複合膜之各項特性。
由結果顯示製備出的二氧化矽奈米顆粒二氧化矽奈米顆粒經SEM檢測,發現有均勻球狀的二氧化矽奈米顆粒,而且隨著聚合時間的增加,顆粒也隨之增大。二氧化矽奈米顆粒經FT-IR檢測,對稱伸縮振動的矽氧烷基(Si-O-Si)吸收峰出現在766cm-1,非對稱伸縮振動的矽氧烷基(Si-O-Si)吸收峰出現在1000到1200cm-1之間,由於乙烯基三甲氧基矽烷的碳碳雙鍵(C=C)引入二氧化矽奈米顆粒,所以證實碳碳雙鍵(C=C)吸收峰出現在1410cm-1和1602cm-1。磺酸化二氧化矽奈米顆粒經FT-IR檢測,發現由於苯乙烯磺酸鈉當作磺化劑加入到二氧化矽奈米顆粒,苯環的平面結構振動吸收峰出現在1129cm-1,苯環的平面結構彎曲振動吸收峰在1009cm-1,對稱振動的磺酸根(S=O)吸收峰出現在1040cm-1,非對稱振動的磺酸根(S=O)吸收峰出現在1200cm-1,氫氧基(-OH)吸收峰出現在3400cm-1左右,是因為磺酸根具有吸附水的特性,證實磺酸化二氧化矽奈米顆粒有磺酸根存在。磺酸化二氧化矽奈米顆粒經磺化度檢測,發現不同時間聚合的二氧化矽奈米顆粒隨著磺酸化時間增長;磺化度也隨之增大。MAH-PP經MAH接枝率測定,得知加入4g的MAH有最高的接枝率,故選擇加入4g的MAH與不同時間聚合的二氧化矽奈米顆粒在不同時間磺酸化做的磺酸化二氧化矽奈米顆粒混合製成複合膜。
複合膜經MAH接枝率測定得知,在酸性環境下,磺酸根本身可能會造成PP氧化,導致MAH更容易接上去,所以隨著磺化時間增加,MAH的接枝率就跟著增加。複合膜經介電常數分析,每條線的界面極化值對應頻率,對應頻率越小表示複合膜中團聚尺寸較大,因ε"/ε'較大,所以可能磺酸基團較為稀疏,對應頻率越大表示複合膜中團聚尺寸較小,因ε"/ε'較小,所以可能磺酸基團較為緊密。複合膜經穿刺分析可得知,PP膜本身如果沒加其他材料的話,PP表面孔洞會比較小,結晶度比較高,而導致穿刺值最高,有最高的抗拉伸強度,MAH-PP降低結晶度,但提高MAH基團之間的吸引力,所以導致穿刺值下降,磺酸化二氧化矽奈米顆粒加入MAH-PP內部更明顯降低結晶度,但會因極性互相吸引,磺化時間越長,相對吸引力越大,故穿刺值會越來越高。複合膜經I-V分析可以得知,可以發現MAH-PP本身流動的氫離子數目被MAH抓住沒辦法流動,所以相對來說氫離子數目較低,在通上電壓的時候,電流會較低,磺化時間較短的時候,代表磺化度比較低,可流動的氫離子數目比較少,在通上電壓的時候,電流比較低;磺化時間較長的時候,代表磺化度比較高,可流動的氫離子數目比較多,在通上電壓的時候,電流比較高。

In this study, the silica nanoparticles were prepared by sol-gel method, and sul-fonated silica nanoparticles were prepared by sulfonation modification procedure. MAH-PP was used as a mixing device. And then the properties of the composite membrane were studied.
The results showed that the silica nanoparticles prepared by the nano-particles of silica by SEM, found that the uniform spherical silica nanoparticles, and with the polymerization time increases, the particles also will increase. (Si-O-Si) absorption peak at 766cm-1 and asymmetric stretching vibration of Si-O-Si (Si-O-Si) were measured by FT-IR. (C=C), the absorption peaks appear between 1000 and 1200 cm-1, and the carbon-carbon double bonds (C=C) of the vinyltrimethoxysilane are incorporated into the silica nanoparticles Peaks appear at 1410 cm-1 and 1602 cm-1. The sulfonated silica nanoparticles were detected by FT-IR. It was found that the absorption peak of benzene ring was 1129cm-1 due to the addition of sodium styrenesulfonate as the sulfonating agent to the silica nanoparticles. Benzene (S=O) absorption peak at 1040 cm-1 and asymmetric vibrational sulphonic acid (S=O) absorption peak at 1200 cm-1 and 100 cm-1, respectively. The absorption peak of the symmetric vibrating sulphonate (S=O) The hydroxyl (OH) absorption peak appears at about 3400 cm-1 because the sulfonate ion has the property of adsorbing water, which confirms the presence of sulfonate groups in the sulfonated silica nanoparticles. The sulfonation degree of the sulfonated silica nanoparticles was measured by the sulfonation degree. It was found that the sulfonation time of the polymerized silica nanoparticles increased with the sulfonation time, and the sulfonation degree also increased. MAH-PP MAH grafted by the determination that the addition of 4g MAH has the highest grafting rate, so choose to add 4g of MAH and different time polymerization of silica nanoparticles sulfonated at different times to do the sulfonated bis Silicon oxide nanoparticles mixed into a composite membrane.
MAH grafting rate of the composite membrane was determined that, in the acidic environment, the sulfonate itself may cause PP oxidation, leading to MAH more easily connected, so with the sulfonation time increases, MAH grafting rate increases. The smaller the corresponding frequency, the larger the agglomeration size of the composite membrane. Because ε "/ ε 'is large, the sulfonic acid group may be relatively sparse, and the interfacial polarization value of the composite film is relatively sparse. The larger the corresponding frequency, the smaller the agglomeration size of the composite membrane, because ε "/ ε 'is small, it is possible that the sulfonic acid group is more compact. The composite film can be obtained by puncture analysis, PP film itself, if not add other materials, then, PP surface pores will be relatively small, relatively high crystallinity, which leads to the highest puncture value, the highest tensile strength, MAH-PP lower crystallization , But increased the attraction between the MAH groups, resulting in decreased puncture value, sulfonated silica nanoparticles added MAH-PP internal significantly reduced crystallinity, but will attract each other due to polarity, the longer the time of sulfonation , The greater the relative attractiveness, so the puncture value will be higher and higher. It can be found that the number of hydrogen ions flowing in the MAH-PP itself can not be flowed by the MAH, so the number of hydrogen ions is relatively low, the current will be lower when the voltage is on, Sulfonation time is shorter, representing the sulfonation degree is relatively low, the number of flowable hydrogen ions is relatively small, in the pass on the voltage when the current is relatively low; sulfonation time is longer, on behalf of the sulfonation degree is relatively high, The number of hydrogen ions can flow more, in the pass on the voltage when the current is relatively high.

摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1研究動機與目的 1
第二章 文獻回顧 2
2-1二氧化矽奈米顆粒介紹 2
2-2溶膠-凝膠法(sol-gel method) 2
2-2-1溶膠凝膠反應機制 3
2-2-2製程對奈米氧化矽之影響 5
2-2-3溶膠凝膠法之優缺點 9
2-2-4溶膠凝膠法之應用 10
2-2-5溶膠凝膠法之相關文獻 10
2-3聚丙烯介紹 11
2-4磺酸化的原理 12
2-5燃料電池介紹 12
2-5-1燃料電池的發展與現況【20】 13
2-5-2燃料電池種類 15
2-6質子交換膜介紹 20
2-6-1質子交換膜工作原理 21
2-6-2質子傳導機制 23
2-7介電常數 24
第三章 實驗方法 26
3-1實驗材料 26
3-2實驗儀器 28
3-3 實驗步驟 32
3-3-1二氧化矽奈米顆粒的製備 32
3-3-2磺酸化二氧化矽奈米顆粒的製備 32
3-3-3聚丙烯接枝馬來酸酐(MAH-PP)的製備 32
3-3-4複合膜的製備 33
3-4儀器分析 33
3-4-1場發射掃描電子顯微鏡(FE-SEM) 33
3-4-2傅立葉紅外線光譜儀(FT-IR) 34
3-4-3磺化度測量 35
3-4-4 MAH接枝率 36
3-4-5介電分析儀(Dielectric analysis, DEA) 38
3-4-6穿刺分析儀(Puncture analysis) 39
3-4-7I-V分析儀 39
第四章 結果與討論 41
4-1二氧化矽奈米顆粒 41
4-1-1SEM分析 41
4-1-2官能基分析 42
4-2磺酸化二氧化矽奈米顆粒 43
4-2-1反應機制 43
4-2-2官能基分析 44
4-2-3磺化度測定 46
4-3MAH接枝率測定 48
4-4複合膜 53
4-4-1介電常數分析 53
4-4-2穿刺分析 58
4-4-3 I-V分析 60
第五章 結論 62
第六章 未來展望 64
參考文獻 65

1.G. Herbert, J. Eur. Ceram. Soc. 14, 205(1994).
2.Werner Stöber, Arthur Fink, Ernst Bohn , “Controlled growth of monodis-perse silica spheres in the micron size range Journal of Colloid and Interface Science”, Volume 26, Issue 1, Pages 62-69, January 1968.
3.Alberto Alvarez-Herrero, H. Guerrero, T. Tam, and D. Levy, “High sensitiv-ity temperature sensor based on overlay on side-polished fiber”, IEEE Photon. Technol. Lett., Vol.22, No, 8, pp. 1043–1045, 2000.
4.Ottokar Leminger, and R. Zengerle, “Narrow-band directional coupler made of dissimilar single-mode fibers with different cladding reflective indexes”, J. Lightwave Technol., Vol.8, No.9, pp. 1289–1291, 1990.
5.Anurag Sharma, Jacintha Kompella and Prasanna K. Mishra, Member, “Analysis of fiber direction couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol., Vol.8, No.2, pp. 143–151, 1990.
6.M. Tabib-Azar, Evanescent Microwave Microscopy for High-Speed and High-Resolution Material Characterizations, Kluwer Academic Publish-ing,Boston, 1999.
7.C.J.Brinier,K.D.Keefer,R.A.Assink,B.D.Kay and C.S.Ashley,J.Non-Cyst.Solids,63,45(1984).
8.R.Aelion,A.Loebel and F.Eirich,J.Am.Chen.Soc.,72(1950) 5705-5712.
9.V. T. Chitnis, S. Kumar, and D. Sen, “Optical fiber sensor for vibration am-plitude measurement”, J. Lightwave Technol., Vol. 7, pp. 687–691, 1989.
10.R. K. Iler, “The Chemistry of Silica” , Wiley (1979).
11.王國瑞,國立台灣科技大學 纖維及高分子工程技術研究所 碩士論文(1998)。
12.V.L.Rao,M.C.Eshwar and G.N. Ba-bu,J.Macromol.Sci-Chem.,A23,1079(1986).
13.J.L.Ferrance,H.Matsumoto and T.Okabe,J.Dent.Res.,69,1652(1985).
14.I.A.Rahman et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 294(2007) 102-110.
15.聶穎、燕豐,「國內外聚丙烯的生產消費現狀及發展前景」,化工文摘2008年02期,18-21(2008)。
16.陳柏瑋,聚丙烯/竹筷纖維複合材料之製備與探討,朝陽科技大學應用化學系碩士論文(2009)
17.曾育貞,改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究,國立台灣科技大學化學工程系,碩士學位論文(2006).
18.李亮儀,奈米管複合高分子中高溫質子交換膜,國立中央大學化學研究所,碩士學位論文(2008)
19.楊志中、林頌恩、韋文誠,科學發展,367期,7月,2003。
20.黃育楓,製備聚乙烯醇半互穿網材料做為燃料電池質子傳導膜應用之研究,2006。
21.G. J. K. Acres, J. G. Frost, G. A. Hards, R. J. Potter, T. R. Ralph, D. Thomp-sett, G. T. Burstein, G. J. Hutchings, “Electrocatalysts for Fuel Cells” , Ca-talysis Today, vol. 38, p. 393 (1997).
22.A.J. Appleby and F.R. Foulkes.Fuel Cell Handbook, Van Nostrand-Reinhold, New York(1989).
23.李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷 第四期(1997).
24.J. Giner, C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Elec-trolyte”, J. Electrochem. Soc., Vol. 116, pp. 1124-1130(1969).
25.K. Scott, W. M. Taama, P. Argyropoulos, “Engineering aspects of the direct methanol fuel cell system”, Journal of Power Sources, Vol. 79,pp. 43-59, May 1999.
26.A.Biyikoglu,“Review of Proton Exchange Membrane Fuel Cell Models";Int.J.Hydrogen Energy,Vol.30,pp.1181-1212(1998).
27.鄭煜騰,鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,1997,27(2):pp.118
28.P. S. Kauranen, E. Skou, 'Methanol Permeability in Perflousulfonate Proton Exchange Membranes at Elevated Temperature'J. Appl. Electrochem, Vol.26, 1996, p.909.
29.X. M. Ren, M. S. Wilson, and S. Gottesfeld. J. Electrochem. Soc., 143, 115 (1996).
30.J. Cruickshank, K. Scott, J. Power Sources, 70, 40-47 (1998).
31.K.Scott;W.M.Taama;P.Argyropoulos;K.Sundmacher,“The impact of mass transport and methanol crossover on the direct methanol fuel cell",J.Power Sources,83,(1999),204.
32.浦鴻汀,(同濟大學材料學院功能高分子研究所,上海200092)
33.S.R.Samms,S Wasmus and R.F.Savinell,“Thermal stability of Nafion in simunlated fuel cell environments",J.Electrochem. Soc.143,(1996),1498.
34.S.Hikita,K.Yamane,Y.Makajima,“Measurement of methanol crossover in direct methanol fuel cell"JSAE Review,22,(2001),151.
35.S.-W. Chuang et al. / Journal of Membrane Science 305 (2007) 353-363.
36.D.H.Jung,C.H.Lee,C.S.Kim,D.R.Shin,“Performance of a direct methamol polymer electrolyte fuel cell",J.Power Source,71,(1998),169.
37.Bahar, B.,Hobson, A. R.,Kolde, J. A. , Zuckerbrod, D. U.S. Patent1996, 5, 547, 551.
38.吳千舜,新穎質子交換膜,國立中央大學,化學研究所,碩士論文(2004)
39.吳千舜,諸伯仁,燃料電池質子交換膜的最新發展,九十三年六十二卷一期
40.李軒誠,質子交換膜燃料電池研究-MEA的製程與應用,南臺科技大學 機械工程研究所,碩士論文(2004).
41.呂俊逸,質子交換膜燃料電池研究-MEA的製程和性能分析,國立中山大學 機械工程研究所,碩士論文(2000).
42.Lina Fukuhara, Noriyuki Kado, Kenichiro Kosugi, Patjaree Suksawad, Yo-shimasa Yamamoto, Hiroyuki Ishii, Seiichi Kawahara, Preparation of poly-mer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene, Solid State Ionics, 268, 191–197, 2014.
43.吳榕修,應用基板合成波導於60-GHz頻段介電常數之量測技術,國立臺灣海洋大學通訊與導航工程學系碩士學位論文,2011。
44.Maheshwari, Preeti, Electronic Components And Processes, New Age Inter-national, 2008, ISBN 9788122417944
45.Jae-Hong Kim, Sang-Kyung Kim, Kidon Nam, Dong-Won Kim, Composite proton conducting membranes based on Nafion and sulfonated SiO2 nanoparticles, Journal of Membrane Science, 2012, 696–701.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top