跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃斯維
研究生(外文):Sih Wei Huang
論文名稱:高靈敏的BRAF及PIK3CA基因突變檢測開發與應用
論文名稱(外文):Development and application of highly sensitive methods for detecting of BRAF and PIK3CA gene mutations
指導教授:邱全芊
指導教授(外文):C. C. Chiou
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:67
中文關鍵詞:大腸直腸癌上皮細胞生長因子受體肽鍊核酸
外文關鍵詞:BRAFCRCEGFRFRETKRASPIK3CAPFSPCRPNAVEGF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌 (colorectal cancer) 是目前全球盛行率以及死亡率極高的惡性腫瘤之一。在大腸直腸癌的形成與惡化過程中,基因變異扮演重要的角色,尤其以上皮細胞生長因子受體 (epidermal growth factor receptor;EGFR) 訊息傳遞路徑的基因變異最為常見,這些基因包括EGFR、KRAS、BRAF、PIK3CA等。此外,這些基因變異也會影響標靶藥物的成效;因此發展一個快速及簡便的方法偵測這些變異對於臨床診斷非常重要。本研究利用肽鍊核酸 (peptide nucleic acid;PNA) 探針,發展偵測BRAF V600E、PIK3CA E545K/D549N突變方法,搭配先前實驗室開發的KRAS 突變檢測,組成突變檢測套組,作為臨床預估治療效果的指標。研究結果BRAF、PIK3CA已建立偵測的方法,可以偵測到0.1%的突變率,除了用PNA probe偵測臨床檢體外,也利用先前實驗室已開發之single-probe 方法偵測檢體,作為本研究發展方法的比較。使用PNA probe 與single-probe兩個方法偵測50個大腸直腸癌癌檢體的結果,偵測到的KRAS突變分別為19 (38.0%) 與17 (34.0%) 個;BRAF V600E突變分別為9 (18.0%) 與5 (10.0%) 個;PIK3CA E545K/D549N突變分別為7 (14.0%) 與5 (10.0%) 個,這些結果都經過定序確認。由上述結果可知PNA probe 的靈敏度比single-probe 高。因此我們希望PNA probe偵測突變方法能在臨床實驗室使用。
Colorectal cancer (CRC) is a malignant disease with high prevalence and high mortality worldwide. During CRC progression and metastasis, genes mutation plays an important role. Mutations in genes of epidermal growth factor receptor (EGFR) signaling pathway are common in CRC. These mutated genes include EGFR, KRAS, BRAF, and PIK3CA. Furthermore, these gene mutations also affect the efficiency of EGFR targeted therapy. Therefore it is important to establish a rapid and convenient detection methods for these mutations. This study used peptide nucleic acid (PNA) probes to develop detection methods for BRAF (V600E) and PIK3CA (E545K and D549N) gene mutations. These tests will be combined with the KRAS mutation test that our laboratory have established before and assembled as a mutation detection panel for prediction of therapeutic efficacy. The results showed that our tests using PNA probes can detect 0.1% mutant in the wild-type background. In addition to PNA probe method, we applied another detection method using single-probe, which our laboratory have been establish before, for comparison. in 50 colorectal cancer samples, the method using PNA probe and the method using single-probe detected 19 (38.0%) and 17 (34.0%) KRAS mutations, 9 (18.0%) and 5 (10.0%) BRAF V600E mutations,and 7 (14.0%) and 5 (10.0%) PIK3CA E545K/D549N mutations, respectively. All the mutations were confirmed by direct sequencing. This results indicated that the method using PNA probe have higher sensitivity than the method using single probe. We hope that the PNA probe panels for mutation detection can be used in clinical laboratories.
指導教授推薦書
口試委員審定書
國家圖書館授權書
長庚大學授權書
致謝……………………………………………………………………..v
英文名詞縮寫對照…………………………………………………….vi
中文摘要….…………………………………………………………...vii
英文摘要………………………………………………………….......viii
目錄…………..………………………………………………………...ix
圖表目錄………………………………………………………………xii
第一章、 文獻回顧…………………………………………………..1
1.1 大腸直腸癌 (Colorectal cancer) …….…………………….......1
1.2 EGFR訊息傳遞路徑……………………………………….…..6
1.3 臨床治療難題與偵測平台開發…………………………...….10
1.4 基因突變的檢測方法……………………………………..…..10
1.5 研究動機………………………………………………………14
第二章、 實驗目的…………………………………………..……..15
第三章、 實驗設計與目標…………………………………..……..16
3.1 實驗設計………………………………………………..……16
3.2 研究目標…………………………………………………..…18
第四章、 材料與方法…………………………………………...….20
4.1實驗材料………………………………………………………...20
4.2細胞株………………………………………………….……......20
4.3大腸直腸癌組織檢體………………………………………..….21
4.4DNA萃取………………………………………………..….......21
4.5製備質體標準品…….…………………………………..…....…22
4.6利用single-probe方法測定基因型…………………………..…23
4.7利用PNA probe方法以non-clamping PCR條件測定基因型…24
4.8利用PNA probe方法以clamping PCR 條件測定測定基因型..24
第五章、 實驗結果………………………………………………....26
5.1建立偵測BRAF及PIK3CA基因突變的高靈敏度檢測平台….26
5.1.1BRAF及PIK3CA的引子及探針設計………………..………26
5.1.2以Non-clamping PCR條件測試PNA probe對野生型及突變型之Tm…………………………………………………..….….26
5.1.3設定合適的clamping PCR條件………………...……………27
5.1.4PNA probe以clamping PCR條件偵測大腸直腸癌組織檢體KRAS、BRAF及PIK3CA的基因突變……..……………27
5.1.5構築BRAF、PIK3CA突變及野生型基因型片段的質體….....28
5.2比較PNA probes與single-probes方法檢測大腸直腸檢體結果…………………………………………………………………28
5.2.1重現single-probe方法之結果…………………..…………...28
5.2.2以single-probe方法偵測大腸直腸癌組織檢體KRAS、BRAF及PIK3CA的基因突變…………………..…………………..29
5.2.3比較PNA probe與single-probe方法偵測大腸直腸癌組織基因突變數量…………………………………………………..29
5.2.4比較PNA probe與single-probe方法偵測大腸直腸癌組織基因突變的比例………………………………………………..30
第六章、 討論………………………………………………..……..31
第七章、 參考資料…………………………………………..……..33

圖表…………………………………………………………………....38
表一、帶有KRAS、 BRAF或PIK3CA突變之細胞株……..………….38
表二、已構築之BRAF、PIK3CA突變及野生型質體列表……..….…39
表三、使用single-probe、PNA probe檢測50個大腸直腸癌檢體所發現之突變基因....................40

圖一、BRAF、PIK3CA 引子及探針相對位置....................................42
圖二、PNA probe在non-clamping PCR條件下BRAF不同基因型之融離曲線結果……………………….....43
圖三、PNA probe在non-clamping PCR條件下PIK3CA不同基因型之融離曲線結果……………………………………………....44
圖四、PNA probe在clamping PCR條件測試偵測KRAS基因突變的偵測極限.................45
圖五、PNA probe在clamping PCR條件測試偵測BRAF基因突變的偵測極限.....................46
圖六、PNA probe在clamping PCR條件測試偵測PIK3CA基因突變的偵測極限...........................47
圖七、PNA probe在clamping PCR條件偵測大腸直腸癌臨床檢體與突變基因關係圖.......................48
圖八、定序確認構築之BRAF、PIK3CA突變及野生型的質體..........49
圖九、PNA probe在non-clamping條件偵測genomic DNA及plasmid DNA.............50
圖十、以single-probe偵測細胞株之基因突變.................................51
圖十一、比較PNA probe與single-probe兩種方法偵測大腸直腸癌組織突變基因的數量................52
圖十二、計算PNA probe與single-probe兩種方法偵測大腸直腸癌組織突變基因的比例..................53


1. Jemal, A., et al., Cancer statistics, 2009. CA Cancer J Clin, 2009.
2. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011.
3. Siegel, R., et al., Cancer statistics for Hispanics/Latinos, 2012. CA Cancer J Clin, 2012..
4. Siegel, R., et al., Cancer statistics, 2013. CA Cancer J Clin, 2013.
5. 行政院衛生署國民健康局, CANCER REGISTRY ANNUAL REPORT, 2010 TAIWAN. 2013.
6. Markowitz, S.D. et al., Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009.
7. Oki, E., et al., Mutated gene-specific phenotypes of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in DNA mismatch repair. Oncogene, 1999.
8. Ou, J., et al., Biochemical characterization of MLH3 missense mutations does not reveal an apparent role of MLH3 in Lynch syndrome. Genes Chromosomes Cancer, 2009.
9. Zahary, M.N., et al., Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients. World J Gastroenterol, 2012.
10. Bellcross, C.A., et al., Implementing screening for Lynch syndrome among patients with newly diagnosed colorectal cancer: summary of a public health/clinical collaborative meeting. Genet Med, 2012.
11. Fearon, E.R., et al., progressing toward a molecular description of colorectal cancer development. The FASEB Journal, 1992.
12. Walther, A., et al., Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009.
13. Van Den Berg, Y.W., et al., The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 2012.
14. American Cancer Society, Colorectal Cancer. 2012.
15. Kenji Takeuchi, et al., Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull., 2011.
16. Rottlaender, D., et al., New tyrosine kinase and EGFR inhibitors in cancer therapy. Cardiac and skin toxicity as relevant side effects. Part A: heart. Internist (Berl), 2011.
17. Aparo, S., et al., Evolvement of the treatment paradigm for metastatic colon cancer. From chemotherapy to targeted therapy. Crit Rev Oncol Hematol, 2012.
18. Molinari, F., et al., Increased detection sensitivity for KRAS mutations enhances the prediction of anti-EGFR monoclonal antibody resistance in metastatic colorectal cancer. Clin Cancer Res, 2011.
19. Scartozzi, M., et al., Epidermal growth factor receptor (EGFR) gene promoter methylation and cetuximab treatment in colorectal cancer patients. Br J Cancer, 2011.
20. Scott, A.M., et al., Antibody therapy of cancer. Nat Rev Cancer, 2012.
21. Siegel, R., et al., Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin, 2012.
22. Bennouna, J., et al., Bevacizumab combined with chemotherapy in the second-line treatment of metastatic colorectal cancer: results from the phase II BEVACOLOR study. Clin Colorectal Cancer, 2012..
23. Broadbridge, V.T., et al., Cetuximab in metastatic colorectal cancer. Expert Reviews 2012.
24. Derbel, O., et al., Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery. Derbel et al. BMC Cancer, 2013.
25. Wendy De Roock, et al., KRAS, BRAF, PIK3CA, and PTEN mutations implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol., 2011.
26. Kwong, L.N., et al., The brothers RAF. Cell, 2010.
27. Yokota, T., et al., BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br J Cancer, 2011.
28. De Mattos-Arruda, L., et al., Development of molecular biomarkers in individualized treatment of colorectal cancer. Clin Colorectal Cancer, 2011.
29. Moroni, M., et al., Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. The Lancet Oncology, 2005.
30. Maeng, C.H., et al., High-throughput genotyping in metastatic esophageal squamous cell carcinoma identifies phosphoinositide-3-kinase and BRAF mutations. PLoS One, 2012.
31. Zhang, J., et al., Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology, 2011.
32. Sood, A., et al., PTEN Gene Expression and Mutations in the PIK3CA Gene as Predictors of Clinical Benefit to Anti-Epidermal Growth Factor Receptor Antibody Therapy in Patients With KRAS Wild-Type Metastatic Colorectal Cancer. Clin Colorectal Cancer, 2012.
33. Spindler, K.L., et al., Quantitative Cell-Free DNA, KRAS, and BRAF Mutations in Plasma from Patients with Metastatic Colorectal Cancer during Treatment with Cetuximab and Irinotecan. Clin Cancer Res, 2012.
34. Zhou, S.-w., et al., No Survival Benefit from Adding Cetuximab or Panitumumab to Oxaliplatin-Based Chemotherapy in the First-Line Treatment of Metastatic Colorectal Cancer in KRAS Wild Type Patients: A Meta-Analysis. PLOS ONE 2012.
35. Troiani, T., et al., Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: overcoming the mechanisms of cancer cell resistance. Expert Opin. Biol. Ther, 2013.
36. Downward, J., Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer, 2003.
37. Fedorenko, I.V., et al., Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol, 2011.
38. Klein, R.M., et al., A switch in RND3-RHOA signaling is critical for melanoma cell invasion following mutant-BRAF inhibition. Mol Cancer, 2011.
39. Sharma, S.G., et al., BRAF Mutation Testing in Colorectal Cancer. Arch Pathol Lab Med, 2010.
40. Cantwell-Dorris, E.R., et al., BRAF V600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther, 2011.
41. Kwon, M.J., et al., Frequency of KRAS, BRAF, and PIK3CA mutations in advanced colorectal cancers: Comparison of peptide nucleic acid-mediated PCR clamping and direct sequencing in formalin-fixed, paraffin-embedded tissue. Pathol Res Pract, 2011.
42. Liao, X., et al., Prognostic Role of PIK3CA Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clin Cancer Res, 2012.
43. Lievre, A., et al., Oncogenic mutations as predictive factors in colorectal cancer. Oncogene, 2010.
44. Krol, L.C., et al., Concordance in KRAS and BRAF mutations in endoscopic biopsy samples and resection specimens of colorectal adenocarcinoma. Eur J Cancer, 2012.
45. Sood, A., et al., PTEN gene expression and mutations in the PIK3CA gene as predictors of clinical benefit to anti-epidermal growth factor receptor antibody therapy in patients with KRAS wild-type metastatic colorectal cancer. Clin Colorectal Cancer, 2012.
46. Wei, X., Mechanism of EGER-related cancer drug resistance. Anticancer Drugs, 2011.
47. Eklof, V., et al., The prognostic role of KRAS, BRAF, PIK3CA and PTEN in colorectal cancer. Br J Cancer, 2013.
48. Rizzoa, S., et al., Prognostic vs predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer Treatment Reviews, 2010.
49. Bouche´, O., et al., The role of anti-epidermal growth factor receptor monoclonal antibody monotherapy in the treatment of metastatic colorectal cancer. Cancer Treatment Reviews, 2010.
50. Ye, L.C., et al., Randomized Controlled Trial of Cetuximab Plus Chemotherapy for Patients With KRAS Wild-Type Unresectable Colorectal Liver-Limited Metastases. J Clin Oncol, 2013.
51. Zhou, S.-w., et al., No Survival Benefit from Adding Cetuximab or Panitumumab to Oxaliplatin-Based Chemotherapy in the First-Line Treatment of Metastatic Colorectal Cancer in KRAS Wild Type Patients: A Meta-Analysis. PLOS ONE, 2012.
52. Custodio, A., et al., Prognostic and predictive biomarkers for epidermal growth factor receptor-targeted therapy in colorectal cancer: beyond KRAS mutations. Crit Rev Oncol Hematol, 2013.
53. Wu, S., et al., PIK3CA mutation is associated with poor survival among patients with metastatic colorectal cancer following anti-EGFR monoclonal antibody therapy: a meta-analysis. J Cancer Res Clin Oncol, 2013.
54. Wood, L.D., et al., The genomic landscapes of human breast and colorectal cancers. Science, 2007.
55. Lin, J., et al., A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res, 2007.
56. Tatsumi, K., et al., Rapid screening assay for KRAS mutations by the modified smart amplification process. J Mol Diagn, 2008.
57. Herzer, S., et al., Nucleic acid hybridization. Molecular Biology Problem Solver: A Laboratory Guide, 2001.
58. Han, J., et al., Fluorescence in situ hybridization as adjunct to cytology improves the diagnosis and directs estimation of prognosis of malignant pleural effusions. Journal of Cardiothoracic Surgery, 2012.
59. Howell, W.M., et al., Dynamic allele-specific hybridization. NATURE BIOTECHNOLOGY, 1999.
60. Bando, I., et al., Study of KRAS new predictive marker in a clinical laboratory. Clin Transl Oncol, 2012.
61. Simi, L., et al., High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am J Clin Pathol, 2008.
62. Paris, C., et al., Zip nucleic acids are potent hydrolysis probes for quantitative PCR. Nucleic Acids Res, 2010.
63. Voirin, E., et al., Versatile synthesis of oligodeoxyribonucleotide- oligospermine conjugates. 2007.
64. 張家瑜, 以即時定量PCR方法建立與大腸直腸癌中EGFR標靶治療抗藥性相關基因突變的偵測平台. 2011.
65. Chiou, C.C., et al., Single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe for the detection of rare mutations. Nat Protoc, 2006.
66. Luo, J.D., et al., Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Res, 2006.
67. 陳正翰,利用肽鏈核酸探針偵測大腸直腸癌的K-ras基因突變. 2010.
68. Bardelli, A., et al., Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊