跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯心喻
研究生(外文):Hsin-Yu Ke
論文名稱:PtRuTa/C複合電極觸媒之製備─安定性及甲醇氧化催化活性之探討
論文名稱(外文):Preparation of PtRuTa/C electrocatalysts for improving the stability of Pt-Ru based anodes for use in direct methanol fuel cell
指導教授:卓錦江卓錦江引用關係
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:89
中文關鍵詞:直接甲醇燃料電池甲醇起始氧化電位催化活性穩定性
外文關鍵詞:DMFCPtRuMethanol oxidation onset potentialTantalumElectrocatalytic activityStability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:820
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以含浸法製備PtRuTa/C複合電極觸媒,有系統地探討各不同組成PtRuTa/C電極觸媒對甲醇氧化之催化活性及穩定性;藉由循環伏安法(CV)、計時安培法(CA)以及一氧化碳剝除法(CO-stripping voltammetry)進行電化學特性分析;並使用X光繞射儀(XRD)、能量散射光譜儀(EDS)、電子能譜儀(XPS)、穿透式電子顯微鏡(TEM)以及掃描式電子顯微鏡(SEM)等儀器量測觸媒表面結構特性、組成比例與顆粒大小分佈。
結果顯示:PtRuTa 觸媒表面呈多孔洞結構,其平均粒徑介於4.3至6.1 nm之間,粒徑大小隨著Ta成分比例增加而增加,而Pt在觸媒表面之分布則隨著Ta成分比例增加而有趨於團聚的現象。
經由實驗研究不同掃描速率對於PtRu及PtRuTa組成觸媒對甲醇起始氧化電位(Methanol oxidation on-set potential, VMOSP)判讀之影響,發現PtRuTa/C電極觸媒中的VMOSP遲滯現象,包括正向和逆向掃描,隨著掃描速率降低而減小並趨近於同一值,經由此方式可求得各PtRu及PtRuTa 觸媒之VMOSP精確值。其結果顯示Pt與Ru之最佳成分比例為1: 1,且觸媒中Ta成分比例對於PtRu (Ru 50 atom %)觸媒之VMOSP影響並不明顯。而PtRuTa/C觸媒對於甲醇氧化反應之穩定性分析顯示:複合電極觸媒中添加Ta組成可發揮其在酸液中之耐腐蝕特性,有效降低PtRu在酸液中之溶解現象,其安定PtRu觸媒的作用隨著鉭含量增加而上升,且當Ta含量小於5 atom %時,可有效分散PtRu觸媒,使Pt 之比催化活性隨著Ta含量增加而增加,提升觸媒之催化效果;然而當Ta含量大於5 atom %時,因Ta過多造成的遮蔽作用,使Pt 之比催化活性隨著Ta含量增加而減少。
另一方面,不同組成之PtRuTa/C電極觸媒在0.5 M硫酸的甲醇水溶液中之浸泡實驗結果顯示:在非操作測試中,由於Ta2O5之形成可增加PtRuTa觸媒表面元素之束縛能,使觸媒中之Ta成分有效地抑制Pt及Ru在酸液中之溶解現象。
PtRuTa/C tri-metal electrocatalysts were prepared by impregnation method for use as anode catalysts, with an attempt to improve the stability and electrocatalytic activity of the PtRu for methanol oxidation reaction (MOR). The lattice parameters, composition, and particle size distribution of catalysts were characterized by the means of X-ray diffractometer (XRD), X-ray energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning electron microscope (SEM), respectively. The electrochemical behaviors of the electrodes were studied by cyclic voltammetry (CV), chronoamperometry (CA), and CO-stripping voltammetry. The inductively coupled plasma-mass spectrometer (ICP-MS) was used to detect the dissolved species in the immersing solutions (0.5 M H2SO4 + 2.0 M CH3OH), used for examining the degradation and dissolution of the PtRu catalysts during the out-of-service time.
The results show that the atomic ratios of Pt, Ru, and Ta in the PtRuTa/C catalysts are approximately equal to the known values in the original precursor solutions, indicating the successful preparation of the PtRuTa catalysts. The particle size of the PtRuTa/C catalysts is 4.3 to 6.1 nm with a spherical structure. The catalysts are well dispersed on the carbon black supports; however, the distributions of Pt atoms decrease, while the agglomeration increases, with the increase of Ta content.
On the other hand, the exact methanol oxidation on-set potential (VMOSP) at various PtRu based catalysts are obtained accurately by extrapolation at a scan rate of zero. The results show that the optimum ratio of Pt: Ru is ca. 1:1, and the dependence of VMOSP on the Ta content in the catalyst is insignificant。In addition, the stability of the catalysts for MOR increases significantly with the increase of Ta contents, while the specific activity of the catalysts increases when the Ta content is less than 5 atom %.
Additionally, the degradation and dissolution of the PtRu catalysts during the out-of-service time examined by immersing tests shows that, as well as that in the operation time, the dissolution of Ru on the catalysts is effectively depressed in the presence of Ta due to the formation of Ta2O5.
摘要
ABSTRACT
誌謝
Contents
Table of contents
Figure of contents
Chapter 1 Introduction
Chapter 2 Literature Review
2.1. The anode catalysts of DMFC
2.1.1. Pt-M bimetal electrocatalyst
2.2. Preparation of Pt-Ru catalysts
2.3. The stability of PtRu electrocatalysts
2.3.1. Degradation of PtRu electrocatalysts
2.3.2. Improvement of the stability of the PtRu based catalysts
2.4. Motivation
Chapter 3 Experimental
3.1. Preparation of catalysts
3.2. Preparation of working electrodes
3.3. Electrochemical measurements
3.4. Characterization of catalyst
3.5. The reagents
3.6. Instruments and equipments
Chapter 4 Results and discussion
4.1. Electrocatalyst characterizations
4.2. The catalytic activity of PtRuTa/C electrocatlysts for MeOH oxidation
4.2.1. Measurements of exact VMOSP for the PtRuTa and PtRu electrocatalysts
4.2.2. Effects of Ta contents on the catalytic activity of PtRuTa/C electrocatalyst for MeOH oxidation
4.3. Effects of Ta contents on the stability of PtRuTa/C elecrocatalysts for MOR
4.3.1. Degradation tests for the PtRuTa/C used as anode for MOR
4.3.2. Dependence of the stability of PtRuTa/C on the Ta contents in the catalysts
4.3.3. Structure and morphology analysis for the anodic degradation of the PtRuTa/C
4.3.4. Degradation tests for the PtRuTa/C immersed in acid aqueous MeOH
Chapter 5 Conclusion
References
自傳
[1]An introduction to fuel cells and hydrogen technology by Brian Cook, Heliocentris 3652 West 5th Avenue Vancouver, BC V6R-1S2 Canada.
[2]黃鎮江,燃料電池修定版,2005年3月第二版
[3]K. Sundmacher, K. Scott, “Direct methanol polymer electrolyte fuel cell: Analysis of change and mass transfer in the vapour-liquid-solid system”, Chemical Engineering Science 54 (1999) 2927.
[4]L. Carrette, K. A. Friedrich, U. Stimming, “Fuel cells fundamentals and applications”, Fuel Cells 1 (2001) 5.
[5]A. Hamnett, “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catalysis Today 38 (1997) 445.
[6]V. S. Bagotzky, Y. B. Vassiliev, O. A. Khazova, “Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 81 (1977) 229.
[7]N. A. Hampon, M. J. Willars, B. D. McNicol, “The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes”, Journal of Power Sources 4 (1979) 191.
[8]K. Wang, H. A. Gasteiger, N. M. Markovi , P. N. Ross Jr, “On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces”, Electrochimica Acta 41 (1996) 2587.
[9]T. Freelink, W. Visscher, J. A. R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science 335 (1995) 353.
[10]Y. Zhu, H. Uchida, T. Yajima, M. Watanabe, “Attenuated total reflection-fourier transform infrared study of methanol oxidation on sputtered Pt film electrode”, Langmuir 17 (2001) 146.
[11]T. Yajima, H. Uchida, and M. Watanabe, “In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt−Ru alloy”, Journal of Physical Chemistry B 108 (2004) 2654.
[12]M. Watanabe, S. Motoo, “Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms”, Journal of Electroanalytical Chemistry 60 (1975) 267.
[13]A. Hamnett, B.J. Kennedy, “Bimetallic carbon supported anodes for the direct methanol-air fuel cell”, Electrochimica Acta 33 (1988) 1613.
[14]B. Beden, F. Kadirgan, C. Lamy, J.M. Leger, “Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, Journal of Electroanalytical Chemistry 127 (1981) 75.
[15]M. Watanabe, M. Uchida, S. Motoo, “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry 229 (1987) 395.
[16]D. Chu and S. Gilman, “Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures”, Journal of the Electrochemical Society 143 (1996) 1685.
[17]A.S. Aricò, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, “Effect of PtRu alloy composition on high-temperature methanol electro-oxidation”, Electrochimica Acta 47 (2002) 3723.
[18]J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs”, Journal of the Electrochemical Society 150 (2003) A973.
[19]T. Huang, R. Jiang, J. Liu, J. Zhuang, W. B. Cai, A. Yu, “Synthesis of well-dispersed PtRuSnOx by ultrasonic-assisted chemical reduction and its property for methanol electrooxidation”, Electrochimica Acta 54 (2009) 4436.
[20]W. Chen, G. Sun, Z. Liang, Q. Mao, H. Li, G. Wang, Q. Xin, H. Chang, C. Pak, D. Seung, “The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell”, Journal of Power Sources 160 (2006) 933.
[21]X. Xue, J. Ge, C. Liu, W. Xing, T. Lu, “Novel chemical synthesis of Pt–Ru–P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell”, Electrochemistry communications 8 (2006) 1280.
[22]X. Li, J. Liu, Q. Huang, W. Vogel, D. L. Akins, H. Yang, “Effect of heat treatment on stability of gold particle modified carbon supported Pt–Ru anode catalysts for a direct methanol fuel cell”, Electrochimica Acta 56 (2010) 278.
[23]J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou, H. Yang, “Methanol oxidation on carbon-supported Pt–Ru–Ni ternary nanoparticle electrocatalysts”, Journal of Power Sources 175 (2008) 159.
[24]H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, “A review of anode catalyst in the direct methanol fuel cell”, Journal of Power Sources 155 (2006) 95.
[25]Z. Fu, W. Li, W. Zhang, F. Sun, Z. Zhou, X. Xiang, “Preparation and activity of carbon-supported porous platinum as electrocatalyst for methanol oxidation”, International Journal of Hydrogen Energy, 35 (2010) 8101.
[26]M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, A. Ohta, “Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer-Electrolyte Fuel Cells”, Journal of the Electrochemical Society 143 (1996) 2245.
[27]E. V. Spinacé, A. O. Neto, T. R.R. Vasconcelos, M. Linardi, “Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process”, Journal of Power Sources 137(2004) 17.
[28]K.I. Han, J.S. Lee, S.O. Park, S.W. Lee, Y.W. Park, Hasuck Kim, “Studies on the anode catalysts of carbon nanotube for DMFC”, Electrochimica Acta 50 (2004) 791.
[29]N. Rajalakshmi, Hojin Ryu, M.M. Shaijumon, S. Ramaprabhu, “Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material”, Journal of Power Sources 140 (2005) 250.
[30]D. Nagao, Y. Shimazaki, S. Saeki, Y. Kobayashi, M. Konno, “Effect of ultrasonic irradiation on carbon-supported Pt–Ru nanoparticles prepared at high metal concentration”, Colloids and Surfaces A 302 (2007) 623.
[31]Z. B. Wang, G. P. Yin, J. Zhang, Y. C. Sun, P. F. Shi, “Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell”, Journal of Power Sources 160 (2006) 37.
[32]E. ANTOLINI, J.R.C. SALGADO, L.G.R.A. SANTOS, G. GARCIA, E.A. TICIANELLI, E. PASTOR, E.R. GONZALEZ, “Carbon supported Pt–Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells”, Journal of Applied Electrochemistry 36 (2006) 355.
[33]J.R.C. Salgado, E. Antolini, E.R. Gonzalez, “Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst”, Journal of Power Sources 138 (2004) 56.
[34]H. Gharibi, R. A. Mirzaie, E. Shams, M. Zhiani, M. Khairmand, “Preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode”, Journal of Power Sources 139 (2005) 61.
[35]M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, “Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes”, Journal of Power Sources 142 (2005) 169.
[36]T. Ioroi, Z. Siroma, N. Fujiwara, S. I. Yamazaki, K. Yasuda, “Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells”, Electrochemistry communications 7 (2005) 183.
[37]J. R.C. Salgado, E. Antolini, E. R. Gonzalez, “Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells”, Journal of Power Sources 141 (2005) 13.
[38]E.V Spinacé, A.O Neto, M Linardi, “Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles”, Journal of Power Sources 129 (2004) 121.
[39]M. P. Hogarth, T. R. Ralph, “Catalysis for Low Temperature Fuel Cells”, platinum metals review 46 (2002) 146.
[40]P. Piela, C. Eickes, E. Brosha, F. Garzon, P. Zelenay, “Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode”, Journal of The Electrochemical Society 12 (2004) 2053.
[41]W. Chen, G. Sun, J. Guo, X. Zhao, S. Yan, J. Tian, S. Tang, Z. Zhou, Q. Xin, “Test on the degradation of direct methanol fuel cell”, Electrochimica Acta 51 (2006) 2391.
[42]A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, “Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation”, Journal of Power Sources 130 (2004) 42.
[43]Z. B. Wang, X. P. Wang, P. J. Zuo, B. Q. Yang, G. P. Yin, X. P. Feng, “Investigation of the performance decay of anodic PtRu catalyst with working time of direct methanol fuel cells”, Journal of Power Sources 181 (2008) 93.
[44]G. S. Park, C. Pak, Y. S. Chung, J. R. Kim, W. S. Jeon, Y. H. Lee, K. Kim, H. Chang, D. Seung, “Decomposition of Pt–Ru anode catalysts in direct methanol fuel cells”, Journal of Power Sources 176 (2008) 484.
[45]S. Kang, S. Lim, D. H. Peck, S. K. Kim, D. H. Jung, S. H. Hong, H. G. Jung, Y. Shul, “Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells”, International Journal of Hydrogen Energy 37 (2012) 4685.
[46]M. K. Jeon, J. S. Cooper, P. J. McGinn, “Methanol electro-oxidation by a ternary Pt–Ru–Cu catalyst identified by a combinatorial approach”, Journal of Power Sources 185 (2008) 913.
[47]N. Tsiouvaras, M. V. Martinez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, M. A. Pena, “PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation”, International Journal of Hydrogen Energy 35 (2010) 11478.
[48]K. R. Lee, M. K. Jeon, S. I. Woo, “Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method”, Applied Catalysis B Environmental 91 (2009) 428.
[49]T. Huang, R. Jiang, J. Liu, J. Zhuang, W. B. Cai, A. Yu, “Synthesis of well-dispersed PtRuSnOx by ultrasonic-assisted chemical reduction and its property for methanol electrooxidation”, Electrochimica Acta 54 (2009) 4436.
[50]J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou, H. Yang, “Methanol oxidation on carbon-supported Pt–Ru–Ni ternary nanoparticle electrocatalysts”, Journal of Power Sources 175 (2008) 159.
[51]Z.X. Liang, T.S. Zhao, J.B. Xu, “Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold”, Journal of Power Sources 185 (2008) 166.
[52]Y. Shimazaki, Y. Kobayashi, M. Sugimasa, S. Yamada, T. Itabashi, T. Miwa, M. Konno, “Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells”, Journal of Colloid and Interface Science 300 (2006) 253.
[53]Y. Park, B. Lee, C. Kim, J. Kim and B. Park, “Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes”, Journal of Materials Research 24 (2009) 140.
[54]Juan Tian, Gongquan Sun, Luhua Jiang, Shiyou Yan, Qing Mao, Qin Xin, “Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells”, Electrochemistry Communications 9 (2007) 563.
[55]Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu, “Preparation of ultrafine IrO2Ta2O5 binary oxide particles by a sol-gel process”, Electrochimica Acta 39 (1994) 651.
[56]L. D. BURKE, J. F. HEALY, O. J. MURPHY, “Corrosion of oxide-coated titanium (DSA) anodes in organic solvents (especially methanol)”, Journal of applied electrochemistry 13 (1983) 459.
[57]G. P. Vercesi, J. Rolewicz, Cj. Comninellis, “Characterization of dsa-type oxygen evolving electrodes. Choice of base metal”, Thermochimica Acta 176 (1991) 31
[58]Y. Tanaka a, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, T. Hanawa, “Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES”, Corrosion Science 50 (2008) 2111.
[59]A. Ishihara, K. Lee, S. Doi, S. Mitsushima, N. Kamiya, M. Hara, K. Domen, K. Fukuda, K. I. Ota, “Tantalum Oxynitride for a Novel Cathode of PEFC”, Electrochemical and Solid-State Letters 8 (2005) A201.
[60]Y. Takasu, M. Suzuki, H. Yang, T. Ohashi, W. Sugimoto, “Oxygen reduction characteristics of several valve metal oxide electrodes in HClO4 solution”, Electrochimica Acta 55 (2010) 8220.
[61]A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold, “Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode”, International Journal of Hydrogen Energy 32 (2007) 2320.
[62]A. Ishihara, M. Tamura, K. Matsuzawa, S. Mitsushima, K. I. Ota, “Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell”, Electrochimica Acta 55 (2010) 7581.
[63]K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K. I. Ota, “Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst”, Electrochimica Acta 49 (2004) 3479.
[64]A. Ueda, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki, T. Kobayashi, “Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaOx and NbOx”, Catalysis Today 84 (2003) 223.
[65]J.J. Jow, H.J. Lee, H.R. Chen, M.S. Wu, T.Y. Wei, “Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions”, Electrochimica Acta 52 (2007) 2625.
[66]K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, and Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim A. Wieckowski, “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, Journal of Physical Chemistry B 106 (2002) 1869.
[67]H. R. Chen, H. H. Lai, J. J. Jow, “Annealing effect on the performance of RuO2–Ta2O5/Ti electrodes for use in supercapacitors”, Materials Chemistry and Physics 125 (2011) 652.
[68]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, “How To Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys!”, Journal of Physical Chemistry B 104 (2000) 9772.
[69]S. Zafeiratos, F. Paloukis, G. Papakonstantinou, D. Teschner, M. Hävecker, E. Vass, P. Schnörch, A. Knop-Gericke, R. Schlögl, B. Moreno, E. Chinarro, J.R. Jurado, S.G. Neophytides, “A comparative in situ XPS study of PtRuCo catalyst in methanol steam reforming and water gas shift reactions”, Catalysis Today 157 (2010) 250.
[70]D. Rochefort a, P. Daboa, D. Guaya, P.M.A. Sherwood, “XPS investigations of thermally prepared RuO2 electrodes in reductive conditions”, Electrochimica Acta 48 (2003) 4245.
[71]Wu Jingjie, Tang Haolin, Pan Mu, Wan Zhaohui, Ma Wentao, “Novel methanol electro-oxidation catalyst assisting with functional phthalocyanine supports”, Electrochimica Acta 54 (2009) 1473.
[72]H. Hoster, T. Iwasita, H. Baumgartner, W. Vielstich, “Current-time behavior of smooth and porous PtRu surfaces for MeOH oxidation”, Journal of the Electrochemical Society, 148 (2001) A496.
[73]D. Michell, D.A.J. Rand, R. Woods, “A study of ruthenium electrodes by cyclic voltammetry and X-ray emission spectroscopy”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 89 (1978) 11.
[74]W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, Q. Xin, “Nano-stuctured Pt–Fe/C as cathode catalyst in direct MeOH fuel cell”, Electrochimica Acta 49 (2004) 1045.
[75]O. Kerrec, D. Devilliers, H. Groult, P. Marcus, “Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS”, Materials Science and Engineering B55 (1998) 134.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊