|
參考文獻
1. Wang Liansheng, Han Shuokui., Beijing: Environmental Science Press of China,1993. 2. L.H. Hall, L. B. Kier, Environ. Toxicol. Chem., 1986, 5, 333‐337. 3. T. W. Schultz, N. L. Wyatt, Lin D T. Bull., Environ. Contam. Toxicol., 1990, 44, 47‐72. 4. A. Sabljic, Sci. Total Environ., 1991, 109/110, 197‐220. 5. M. H. Abraham, H. S. Chadha, F. Martins et al., Pestic. Sci., 1999, 55, 78‐88. 6. S. Karabunarliev, O. G. Mekenyan, W. Karcher, Quant. Struct.‐Act. Relat., 1996, 15,302‐310. 7. Y. Tang, K. X. Chen, H. L. Jiang, Euro. J. Med. Chem., 1998, 33,647‐658. 8. H. M. G. Van Der Werf, C. Zimmer, Chemosphere, 1998, 36, 2225‐2249. 9. M. L. Tosato, C. Chiorboli, L. Eriksson et al. , Sci. Total Environ., 1991, 109/110,307‐325. 10. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.150. 11. L.P.Hammett, J.Am.Chem.Soc., 1937, 59, 96. 12. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.150. 13. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:129-130 14. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:149-155 15. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:6 16. Rosenberry TL. Acetylcholinesterase. AdvEnzymol Relat Areas Mol Biol. 1975; 43:103–218. 17. D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev. 1987; 87:955–979 18. Massoulie J, Bon S. The Molecular forms of Cholinesterase and Acetylcholinesterase in Vertebrates. Annual Reviews in Neuroscience 1982; 5: 57-106 19. Nelson DL, Cox MM. “Lehninger principles of biochemistry”. 4th ed. New York: WH Freeman and Company. 2005:72 20. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991; 253:872–879. 21. Rosenberry TL. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975; 43:103–218 22. Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic; 1983. 23. Giacobini, E. “In Alzheimer_s Disease: Molecular Biology to Therapy: Becker R., Giacobini E”. Boston; Birkhauser; 1997:187–204. 24. Giacobini E. “Cholinestease inhibitors do more than inhibit cholinesterase. In: Becker R, Giacobini E, editors. Alzheimer’s disease: Molecular biology to therapy“. Boston;Birkhauser; 1997:188–204. 25. Taylor P. ”In: Gilman AG, Nies AS, Rall TW, Taylor P, editors. The pharmacological basis of therapeutics”. 5th edition. New York: Macmillan; 1975:131–150. 26. Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic;1983. 27. Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 1998;51(1,Suppl 1):S30–S67. 28. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman1. Atomic structure of acetylcholinesterase from Torpedo californica:A prototypic acetylcholine-binding protein. Science 1991; 253:872-879. 29. Gialih Lin, Hsin-Chang Tseng, Ai-Chi Chio, Tsao-Ming Tseng, Bo-Yi Tsai. A rate determining step change in the pre-steady state of acetylcholinesterase inhibitions by 1,n-alkane-di-N-butylcarbamates. Bioorganic & Medicinal Chemistry Letters 2005; 15:951-955 30. Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 2002; 41:3555–3564. 31. Sultan Darvesh, David Hopkins, Changiz Geula. Neurobiology of Butyrylvholinesterase. Neuroscience 2003; 111:131-138 32. Mendel B,Rudney H. Studies on cholinesterase: Cholinesterase and pseudo-cholinesterase. Biochem J 1943; 37(1):59–63 33. Masson P, Froment M-T, Fort S, Ribes F, Bec N, Balny C, Schopfer LM. Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: Analysis of volume changes upon reaction and hysteretic behavior. Biochim Biophys Acta 2002; 1597:229–243. 34. E. Stedman, L. K. Easson. Choline-esterase: An enzyme present in the blood-serum of the horse. Biochem. J 1932; 26:2056-2066 35. Chatonnet A,Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 15;260(3):625–634 36. Lockridge, O. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem 1987; 262:549–557 37. D Grob, JL Lilienthal Jr, AM Harvey, BF Jones - Bull. Johns Hopkins Hosp The administration of di-isopropyl fluorophosphates (DFP) to man. I.Effect on plasma and erythrocyte cholinesterase; general systemic effects; use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. Bull John Hopkins Hosp 81:217-244 38. Lockridge O, Eckerson HW, La Du BN. Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem 1979; 254(17):8324–8330 39. Quinn DM. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 1987; 87:955–979. 40. Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Am Chem Soc 1996; 118:2340–2346. 41. Bartolucci C, Perola E, Cellai L, Brufani M, Lamba D. ”Back door” opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry 1999; 38:5714–5719. 42. Lombardo D. Modification of the essential amino acids of human pancreatic carboxylic-ester hydrolase. Biochim Biophys Acta. 1982; 700(1):67–74 43. Gallo LL, Clark SB, Myers S, Vahouny GV. Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J Lipid Res 1984; 25(6):604–612 44. Sutton, LD, Stout, JS,Hosie L, Spencer PS, Quinn DM. Phenyl- n-butylborinic acid is a potent transition state analog inhibitor of lipolytic enzymes. Biochem Biophys Res Commun 1986; 134:386-392. 45. J. S. Stout , L. D. Sutton, D. M. Quinn.Dependence of transition-state structure on acyl chain length for cholesterol esterase-catalyzed hydrolysis of lipid p-nitrophenyl esters J. Am. Chem. Soc 1990; 112:8398-8403 46. Sutton LD, Froelich S, Hendrickson HS, Quinn DM. Cholesterol esterase catalyzed hydrolysis of mixed micellar thiophosphatidylcholines: a possible charge-relay mechanism. Biochemistry 1991; 30:5888–5893 47. D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev 1987; 87:955–979 48. LL Gallo, SB Clark, S Myers, and GV Vahouny Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J. Lipid Res 1984; 25:604-612 49. Bhat SG, Brockman HL. The role of cholesteryl ester hydrolysis and. Purification and characterization. Eur J Biochem 1982; 116:221-225 50. Hui DY. Molecular biology of enzymes involved with cholesterol esterase hydrolysis in mammalian tissues. Biochim Biophys Acta 1996; 1303:1-14. 51. Myers-Payne SC, Hui DY, Brockman HL, Schroeder F. Cholesterolesterase: a cholesterol transfer protein. Biochemistry 1995; 34(12):3942–3947 52. Gialih Lin, Wei-Cheng Liaoa, Shyh-Ying Chiou. Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n-substituted carbamates. Bioorganic & Medicinal Chemistry 2000; 11:2601-2607 53. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990; 343(6260):767–770 54. D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 206. 55. D. Lombardo, O. Guy. Biochim. Biophys. Acta., 1980, 611:147–155. 56. R. H. Abeles and A. L. Maycock. Acc. Chem. Res., 9 1976,pp. 313–319. 57. W. E. Momsen and H. L. Brockman. Biochem. Biophys. Acta., 1997, 486, 103‐113. 58. T. P. Kenakin, Pharmacologic Analysis of Drug–Receptor Interaction, 3rd edn.,Lippincott‐Raven, Philadelphia, 1997. 59. Gialih Lin,* Yu-Chen Liu, Yon-Gi Wu and Yu-Ru Lee. J. Phys. Org. Chem. 2004, 17,707-714 60. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.173. 61. L.P.Hammett, Physical Organic Chemistry, McGraw-Hill Book Co., Inc., New York, NY, 1940, Chaps. III,IV,VII 62. Taft, R. W. J. Am. Chem. Soc. 1952, 74, 2729 and 3120. 63. Järv, J.; Kesvatera, T.; Aaviksaar, A. Eur. J. Biohem. 1976, 67, 315. 64.Scott Gronert* and James R. Keeffe*, J. Org. Chem. 2006, 71,5959-5968 65..Jie Song and Mark S. Gordon*, Carol A. Deakyne, Wencui Zheng. J. Phys. Chem. A 2004, 108, 11419-11432. 66.A. Szabo; N. S. Ostlund, Modern Quantum Chemistry. 1st ed.; McGRAW-HILL: New York: 1982. 67R. Eisberg, R. Rensick著, 單溥 陳自強 黃棟洲譯, 量子物理學, 復漢出版社, 1988. 68.劉東昇, 化學量子力學. 徐氏基金會: 1998. 69.I. N. Levine, Quantum Chemistry. 5th ed.; Prentice Hall: 2000. 70.蘇世剛; 牟中原, 化學 1989, 47, 308. 71. A. E. Frisch; Foresman, J. B., Exploring Chemistry with Electronic Structure Methods. 2nd ed.; Gaussian, Inc.: 1996. 72.W. J. Hehre; J. Yu; P. E. Klunzinger; Lou, L., A Brief Guide to Molecular Mechanics and Quantum Chemical Calculations. Wavefunction, Inc: Irvine, 1998. 73.W. J. Hehre; L. Radom; P. v. R. Sckleyer; Pople, J. A., ab initio Molecular Orbital Theory. John Wiley & Sons: New York, 1986. 74.P. Hohenberg; W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864. 75.J. B. Foresman; A. Frisch, Exploring Chemistry with Electronic Structure Methods. 2nd ed.; 1964. 76.Allinger, N. L., J. Am. Chem. Soc. 1977, 99, 8127-8134. 77.Burkert, U.; Allinger, N. L., Molecular Mechanics. American Chemical Society,Washington D. C.: 1982. 78.Frenkel, D.; Smit, B., Understanding Molecular Simulation. Academic Press, 2002. 79.W. Kohn; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965, 140, 1133. 80.A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. 81.J.H. Van Vleck, nonorthogonality and ferromagnetism, Phys, Rev, 49, 232,1936. 82.M. A. Frisch; J. A. Pople; J. S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265. 83.C. Lee; W. Yang; R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. 84.C. J. Cramer, Essentials of Computational Chemistry – Theories and Models. John Wiley & Sons: New York, 2002. 85.R. McWeeny; Dierksen, G., Self-Consistent Perturbation Theory. II. Extension to Open Shells. J. Chem. Phys. 1968, 49, 4852. 86.J. J. P. Stewart, Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem. 1989, 10, 221. 87.J. J. P. Stewart, Reply to ldquoComments on a comparison of AM1 with the recently developed PM3 methodrdquo. J. Comput. Chem. 1990, 11, 543. 88.J. J. P. Stewart, Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem. 1991, 12, 320. 89.S. Huzinaga, Gaussian Basis Sets for Molecular Calculations. Elsevier: New York, 1984. 90.Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439. fig 1. 91.Slater, J. C. Phys. Rev. 1930, 36, 57. 92.Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry Macmillan: New York, 1982. 93.A. Rios; T. L. Amyes; Richard*, J. P., Formation and Stability of Organic Zwitterions in Aqueous Solution:Enolates of the Amino Acid Glycine and Its Derivatives. J. Am. Chem. Soc. 2000, 122, 9373. 94.顧子瑄, 三-醯氧-甲基磺酸酯苯類化合物對乙醯膽鹼酯酶、丁醯膽鹼酯酶、假單胞菌屬脂肪酶及膽固醇酶之抑制機理, 國立中興大學化學研究所論文, 2005.
|