|
[1] http://en.wikipedia.org/wiki/A._E._Becquerel [2] http://en.wikipedia.org/wiki/Charles_Fritts [3] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J.Appl. Phys., Vol. 25, p. 676-677, (1954). [4] J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells, Vol. 65, p.429-435, (2001). [5] William Sockley, and Hans J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J.Appl. Phys., Vol. 32, No. 3, p. 510-519, (1961). [6] Alexander Slade, and Vahan Garboushian, “27.6% efficient silicon concentrator solar cells for mass production,” Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, (2005). [7] http://en.wikipedia.org/wiki/Solar_cell [8] Martin A Green, ” Silicon solar cells evolution, high-efficiency design and efficiency enhancement,” Semicond. Scl. Techno1 8. (1993). [9] Christopher E. Valdivia*a, Eric Desfonds b, Denis Masson b, Simon Fafard b, Andrew Carlson c, John Cook c, Trevor J. Hall a, Karin Hinzer a, “Optimization of antireflection coating design for multi-junction solar cells and concentrator systems,” Proc. of SPIE, Vol. 7099, (2008). [10] http://us.sanyo.com/Solar/SANYO-HIT-Technology [11] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H.Sakata, M. Morizane, K.Uchihashi, N. Nakamura, S.Kiyama, and O. Oota., ” HIT cells - high efficiency crystalline si cells with novel structure,” Progress in Photovoltaics: Research and Applications, Vol. 8, p. 503, (2000). [12] E. Vazsonyi!, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, “Improved anisotropic etching process for industrial texturing of silicon solar cells,” Solar Energy Materials &; Solar Cells 57, p. 179-188, (1999). [13] Hsiao-Yen Chung, Chiun-Hsun Chen, and Hsin-Sen Chu , “Analysis of pyramidal surface texturization of silicon solar cells by molecular dynamics simulations,” International Journal of Photoenergy, Vol. 2008, Art. 282791, p. 6, (2008). [14] Hyo Sik Chang, Hyun Chul Jung and Hyoung Tae Kim, “Improved light trapping structure for monocrystalline silicon,” Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology, Icheon Gyeounggi, Vol. 978, p. 4244, (2010). [15] M. Cid *, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, ” Improvements in anti-reflection coatings for high-efficiency silicon solar cells,” Surface and Coatings Technology, Vol. 106, p. 117, (1998). [16] J. Zhao and Martin A. Green, “Optimized antireflection coatings for high efficiency silicon solar cells,” IEEE Transaction on Electron Device., Vol. 38, No. 8, (1991). [17] Armin G. Aberle , “Surface passivation of crystalline silicon solar cells:A Review,” Prog. Photovolt: Res. 8, Vol. 362-376, (2000). [18]http://www.alexandrite.net/chapters/chapter7/methods-of-producing-synthetic-alexandrite.html [19] T.F. Ciszek*, T.H. Wang, ”Silicon defect and impurity studies using float-zone crystal growth as a tool,” Journal of Crystal Growth Vol. 237–239, p. 1685, (2002). [20] Jung M. Kim and Young K. Kim*,z, ” Saw damage induced Structural defects on the surface of silicon crystals,” Journal of The Electrochemical Society, Vol.152, p. 189-192, (2005). [21] S. K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., Vol. 7, p.427-431, (2004). [22] A. F. Thomson and K.R.McIntosh, ”Degradation of oxide-passivated silicon,” 24th European Photovoltaic Solar Energy Conference, 21-25, (2009). [23] Hikaru Kobayashi Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric acid oxidation of si to form ultrathin silicon dioxide layers with a low leakage current density,” J. Appl. Phys. 94,p. 7328, (2003). [24] Thomas Lauinger, Jan Schmidt, Armin G. Aberle, and Rudolf Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., Vol. 68, No. 9, p. 1232-1234, (1996). [25] B. Sopori and Y. Zhang, “H-diffusion mechanism(s) in PECVD nitride passivation of si solar cells,” NCPV 1st Conf. Program Review Meeting, Lakewood Colorado, p. 14-17, (2001) . [26] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films,” Appl. Phys. Lett., Vol. 79, No. 14, p. 2199-2201, (2001). [27] Stefan Dauwe. Jan Schmidt, and Rudolf Hezel, “Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films,” Photovoltaic Specialists Conference, p. 1246-1249, (2002). [28] Zhizhang Chen, Peyman Sana, Jalal Salami, and Ajeet Rohatgi, ” A Novel and effective PECVD SiO2/SiN antireflection coating for si solar cells,” Transactions on Electron Devices, Vol. 40, No. 6, (1993). [29] Jan Schmidt1, Mark Kerr and Andr´es Cuevas, ”Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks,” Semicond. Sci. Technol. 16, p. 164, (2001). [30] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer) ,” Jpn. J. Appl. Phys. 31 , p. 3518-3522, (1992). [31] M. Taguchi , K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure,” Prog. Photovolt: Res. 8, p. 503-513, (2000). [32]Dieter K. Schroder, Daniel L. Meier, ”Solar cell contact resistance-A Review,” IEEE Transactions on Electron Devices, Vol. 31, No. 5, (1984). [33]R. R. King, R. A. Sinton, R. M. Swanson, ”Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency,” IEEE Transactions on Electron Devices, Vol. 37, No. 2, (1990). [34] A. Mouhoub, B. Benyahia, B. Mahmoudi and A. Mougas, ” Selective emitters for screen printed multicrystalline silicon solar cells,” Rev. Energ. Ren.: ICPWE p. 83-86, (2003). [35] E. Urrejola1, K. Peter1, A. Soiland2, E. Enebakk2, ”〖POCl〗_3 diffusion with in-situ SiO_2 barrier for selective emitter multicrystaline solar grade silicon s olar cells,” the 24th European Photovoltaic Solar Energy Conference, p. 21–25, (2009). [36] Yung-HsienWu, Lun-Lun Chen, Jia-Rong Wu and Min-Lin Wu, ”Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion,” semiconductor science and technology, Semicond. Sci. Technol. 25, (2010). [37] B. Hallam, S. Wenham, A. Sugianto, L. Mai, C. Chong, M. Edwards, D. Jordan, and P. Fath, ”Record large area p-type CZ production cell efficiency of 19.3% based on LDSE Technology,” IEEE journal of photovoltaics, Vol. 1, No. 1, (2011). [38] Christiana B. Honsberg, Jeffrey E. Cotter, Keith R. McIntosh, Stephen C. Pritchard, Bryce S. Richards, and Stuart R. Wenham,” Design Strategies for Commercial Solar Cells Using the Buried Contact Technology,” IEEE transactions on electron devices, Vol. 46, No. 10, (1999). [39] Antonio Luque, Steven Hegedus, ”Handbook of photovoltaic science and engineering,” WILEY [40] http://en.wikipedia.org/wiki/Pn_junction [41] Toru Sawada, Norihiro Terada, Sadaji Tsuge, Toshiaki Baba, Tsuyoshi Takahama, Kenichiro Wakisaka, Shinya Tsuda and Shoichi Nakano “High efficiency a-Si c-Si heterojunction solar cell,” IEEE, First WCPEC; Dec. 5-9, (1994). [42] http://en.wikipedia.org/wiki/Air_mass [43]Martin A. Green, ”Solar Cells - operating principles, technology, and system applicetions,” Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, (1982). [44]黃惠良 著,”太陽電池”五南出版社發行(2008). [45]Stephen J. Fonash, ”Solar cell device physics 2nd ed,” Elsevier, (2010). [46] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acid solution,” Solar Energy Materials &; Solar Cells,Vol. 93,p. 1773, (2009). [47] P. Kittidachachan, T. Markvart, G.J. Ensell, R.Gessf and D.M. Bagnall, ” An analysis of a "dead layer" in the emitter of n+pp+ solar cells,” Photovoltaic Specialists Conference, p.1103-1106, (2005). [48] Young-Woo Ok, Ajeet Rohatgi, Yeon-Ho Kil, Sung-Eun Park, Dong-Hwan Kim, Joon-Sung Lee, and Chel-Jong Choi, ”Abnormal dopant distribution in POCL3 diffused N+ emitter of textured silicon solar cells,” IEEE electron device letters, Vol. 32, No. 3, (2011). [49] Matthew Edwards a, Stuart Bowden b, Ujjwal Das b, Michael Burrows b, ” Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells,” Solar Energy Materials &; Solar Cells, Vol. 92, p. 1373– 1377, (2008). [50] Francisco Llopis, Ignacio Tobías, ” Texture profile and aspect ratio influence on the front reflectance of solar cells,” J. Appl. Phys. 100,Vol. 124504, (2006). [51] Z. Iqbal, S. VepYek~,A. P. Webb and P. Capezzuto,” Raman scattering from small particle size polycryatalline silicon,” Solid State Communications, Vol. 37, p. 993–996, (1981). [52] H. Richter, Z.P. Wang , and L. Ley, ” The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, Vo1.39, p.625, (1981). [53] G. Lucovsky, R. J. Nemanich and J. C. Knights, ”Structural interpretation of the vibrational spectra of a-Si:H alloys,” Phys. Rev. B, Vol. 19, p. 2064, (1979). [54] M. H. Srodsky, Manuel Cardona and J. J. Cuomo, ”Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Physical Rev. B, Vol. 16, No.8, (1977). [55] M. Z. Burrowsa, U. K. Das, R. L. Opila, R. W. Birkmire, ”Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” J. Vac. Sci. Technol. P.683, (2008).
|