跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊仁
研究生(外文):Chun-Jen Chen
論文名稱:豬糞與養菇廢棄包混合物經一般堆肥化與蚓糞堆肥化對微生物群落結構之影響
論文名稱(外文):Dynamics of microbial community structure during composting and vermicomposting of the mixture of pig manure and mushroom waste
指導教授:陳仁炫陳仁炫引用關係沈佛亭
口試委員:鍾仁賜譚鎮中簡宣裕
口試日期:2015-01-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:112
中文關鍵詞:豬糞一般堆肥化蚓糞堆肥化微生物群落結構選殖株基因庫構築變性梯度膠體電泳
外文關鍵詞:pig manurecompostingvermicompostingmicrobial community structureclone librariesdenaturing gradient gel electrophoresis (DGGE)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農業有機廢棄物可利用傳統的一般堆肥化 (composting process) 方式達到堆肥腐熟並做為植物生長所需肥料之目的,近年來新興的蚓糞堆肥化 (vermicomposting process) 更是一種降低處理成本之生物穩定化方式,在上述兩種堆肥化過程中,其內所包含的微生物均扮演重要角色,然而過去研究主要著重於一般堆肥化過程中微生物相的變化,鮮少有針對相同來源廢棄物,再經由兩種堆肥化處理後之微生物群落比較。本研究即在探討台灣大宗的農業廢棄物豬糞與養菇廢棄包混合物,經一般堆肥化與蚓糞堆肥化對微生物群落結構之影響。利用培養法與未經培養之基因選殖法,分析廢棄物原料、預堆產物、一般堆肥化成品與蚓糞堆肥化成品中微生物之組成,評估經兩種堆肥化處理後微生物群落結構之差異。
以平板塗抹之菌數分析法測定九類群微生物活菌數,結果可得知細菌、真菌、游離固氮菌、溶磷菌與螢光假單孢菌之數量,皆因預先堆肥化溫度超過70 ℃而呈現下降的趨勢。經由預堆高溫亦使豬糞與養菇廢棄包混合物原料中沙門氏菌數,由2.9×106cfu/g下降至1.9×104 cfu/g,但對大腸桿菌數則無明顯影響。經兩種堆肥化處理後其成品中皆可測得因預堆而減少之細菌、真菌、游離固氮菌與溶磷菌數皆於腐熟的堆肥中有增加之趨勢,兩種堆肥成品中細菌、真菌、放線菌、游離固氮菌、溶磷菌與幾丁質分解菌數差異不大,於蚓糞堆肥中游離固氮菌與溶磷菌數仍有105 cfu/g,幾丁質分解菌數則仍大於106 cfu/g。利用培養法與未經培養之基因選殖法分析樣品中之微生物群落結構,由好氧異營細菌分離株之16S rDNA分析結果得知全部樣品中可測得細菌族群共歸類至6個菌門中,一般堆肥中革蘭氏陽性菌比例較高,其中以Firmicutes菌門之菌群為優勢,蚓糞堆肥中革蘭氏陰性菌比例較高,其中以α-Proteobacteria與β-Proteobacteria菌群為優勢,由未經培養之16S rDNA基因選殖分析結果得知全部樣品中可測得細菌族群共歸類至16個菌門中,一般堆肥中以γ-Proteobacteria菌門之菌群為優勢,佔23 %,蚓糞堆肥中α-Proteobacteria與β-Proteobacteria菌群為優勢,分別為23 %與27%。相較於培養法之分析結果,未經培養之基因選殖法可分析出更多之微生物種類,其中一般堆肥中之菌群共歸類於8個菌門,而蚓糞堆肥中之菌群可歸類於11個菌門,且於兩種堆肥成品中之微生物種類有18個菌屬之差異,顯示蚓糞堆肥化處理會增加細菌種類多樣性,且相同原料經不同堆肥化後對於細菌群落結構影響甚為顯著。
此試驗結果可得知由豬糞作為主原料進行一般堆肥化下優勢細菌群落變化為由Bacteroidetes菌門,經由預堆高溫期後轉變為Firmicutes菌門,最後於腐熟階段一般堆肥以γ-Proteobacteria為優勢菌門,蚓糞堆肥中則以α-Proteobacteria與β-Proteobacteria菌群為優勢菌門。本研究成功建立一般堆肥與蚓糞堆肥廢棄物中細菌群落結構之分析方法,並探討兩種不同堆肥化處理對豬糞與養菇廢棄包混合物中細菌群落結構之影響,可望作為有機廢棄物堆肥化過程中微生物相研究之基礎。
Agricultural organic wastes can serve as fertilizers to promote plant growth after composting process. The emerging technology namely vermicomposting provides an alternative way to stabilize wastes meanwhile reduce the cost for waste treatment. Microorganisms within composting or vermicomposting process play major roles in accelerating the stabilization of organic materials. But study on the comparison of microbial community structure between compost and vermicompost processed from the same raw materials is lack. The present study was undertaken to explore dynamics of microbial community structure during composting and vermicomposting of the mixture of pig manure and mushroom waste. Enumeration of a total of nine microbial groups within raw organic wastes, 14 days pre-composting wastes, composts and vermicomposts was performed separately on selective agar plates. Besides, culture-dependent and culture-independent approaches were used to determine 16S rRNA gene sequences from pure cultures or clone libraries derived from these samples.
The results demonstrated that viable number of bacteria, fungi, free-living nitrogen fixers, phosphate solubilizers and fluorescent Pseudomonads declined after 14 days pre-composting treatment. Number of populations belonging to the genus Salmonella changed from 2.9 x 106 cfu/g to 1.9 x 104 cfu/g, but there was no significant decrease in number of coliform. Viable number of bacteria, fungi, actinomycetes, free-living nitrogen fixers, phosphate solubilizers and chitin degraders was similarin compost and vermicompost samples.Strains isolated from all samples can be assigned into six bacterial phyla, as revealed by their 16S rRNA gene sequence analyses. The percentage of Gram-positive bacteria was higher in compost samples, and these were dominated by the phylum Firmicutes. In contrast, vermicompost harbored higher percentage of Gram-negative bacteria, which were dominated by the phylum α- Proteobacteria and β- Proteobacteria. From 16S rRNA gene clone libraries the sequences derived from all the samples affiliated to 16 bacterial phyla. The γ-Proteobacteria was dominant (23%) in compost samples, while α- Proteobacteria and β- Proteobacteria were dominant (23% and 27%) in vermicompost samples. The culture-independent clone library construction and sequence analysis provided higher diversebacterial lineage information within samples, as compared to culture-dependent method. Microbial community in compost samples consisted of eight bacterial phyla, and there were 11 in vermicompost samples. A total of 18 distinct bacterial genera were recorded when compared with compost and vermicompost samples, and this demonstrated that the microbial community structure after composting and vermicomposting process was quite different.
Dynamics of microbial community structure during composting and vermicomposting of the mixture of pig manure and mushroom waste were explored in the present study. The results showed that bacteria belonging to the phylum Bacteroidetes dominated in raw organic wastes, whichthen changed to the phylum Firmicutes, and the phylum γ-Proteobacteria was dominant in compost samples while α- Proteobacteria and β- Proteobacteria were dominant in vermicompost samples. The methodologies adopted here were useful to monitor and differentiate microbial community structure during two different composting processes. This will provide bases in the clarification of microbes-mediated mineralization and stabilization of organic materials during composting.
摘要………………………………………................…………….................................Ⅰ
Abstract………………………………………………………………...........................III
目錄…………………………………....………………..………………........................V
表次……………………………………………………………………..........................X
圖次………………………………………………………………………………….....XI
附表次…………………………………………………………………......................XIII
附圖次………………………………………………………………………………..XIV

壹、前言……………………………………………………………………………..…...1
貳、前人研究…………………………………………………………………………….2
一、禽畜糞廢棄物資源化………………………………………………........................2
二、 有機廢棄物之堆肥化……………………………………..………………...….….3
(一) 般堆肥化作用……………………………………………………......................….3
(二) 蚓糞堆肥化作用………………………………………………………………..….5
(三) 預先堆肥化作用………………………………………………………………..….8
三、物群落結構分析方法……………..………………………………………….…..…9
(一) 環境樣品中微生物核酸萃取………………………………………………..…….9
(二) 聚合酶連鎖反應(Polymerase chain reaction, PCR)….….....................................10
(三) 分子指紋技術(Molecular fingerprint technique)…………….……......................13
1. 變性梯度膠體電泳 (DGGE)…………………………..….…………………….....13
2. 選殖株基因庫 (Clone libraries) 的構築…………….……….……………………14
四、環境樣品微生物親緣關係分析…………………………………….......................15
參、研究目的…………………………………………...................................................16
肆、材料與方法………………………………………………………………..……....17一、供試資材……………………………………………………..…………………....17
(一) 試驗資材……………………………..………………………………...................17
(二) 試驗蚯蚓…………………………………..…………………..…….....................17
(三) 試驗容器………………….………………………………..…...…………….......17
二、試驗方法及步驟…………………………………………………………………...17
(一) 試驗處理……………………………………………...…......................................17
1. 預先堆肥化………………………………………...…………………………….....17
2. 一般堆肥化與蚓糞堆肥化試驗………………………………...……………….....17
(1) 一般堆化…………………………………………..…...………………………......18
(2) 蚓糞堆肥化……………………………..………………...……..............................18
(3) 對照組………………………………..……………...........………………………..18
(二) 一般堆肥及蚓糞堆肥採樣法………………………...……..……..……………..19
1. 堆肥採樣方法……………………………………………………............................19
2. 蚓糞堆肥採樣方法………………………………………………............................19
三、微生物群落結構分析試驗…………………………..........……………..………...19
(一) 菌種培養…………………………...………………………………..……………21
(二) 好氧性異營細菌分離株純化及定序………….………………………................28
1. 好氧性異營細菌純化……………….………………………………………….......28
2. 反覆凍融試驗……………………………………….…….………..........................28
3. 擴增之16S rDNA進行電泳……………….…………….………………………....28
四、樣品中微生物多樣性與群落結構分析……………………………………......….30
(一) 樣品中微生物核酸萃取……………………………………..…...……………....31
(二) PCR-DGGE (聚合酶連鎖反應-變性梯度膠體電泳)分析……………..………...31
1. 菌株染色體16S rDNA之擴增…………………..………………………………...31
2. 擴增之16S rDNA進行電泳……………………………………...………………..31
3. 變性梯度膠體電泳步驟……………………………………...………………..…...33
(1) 組合水平式電泳膠片配件……………………………….…..…………..……......33
(2) 膠片染色、退染與照膠…………………………………………………………...34
(3) 切膠與DNA回溶……………………………………………………….…….…...34
(4) PCR反應…………………………………………………………….………….…..36
(三) 樣品中微生物選殖株基因庫構築………………………………….…….....…...38
1. 菌株染色體16S rDNA之擴增………………………………………………..…...38
2. 擴增之16S rDNA進行電泳……………………………………………..……..….38
3. PCR (聚合酶連鎖反應)產物純化………………………...………………....……38
4. 菌種DNA濃縮………………………………………………………...….………...40
5. ligation (接合作用)……………………………………………….……………...….40
6. Transformation (轉形作用)……………………………………...………………......41
7. 繼代培養…………………………………………………………............................42
8. 質體DNA中嵌入之16S rDNA分析………………………...………………..….42
伍、結果與討論……………………………………………………………………….45
一、原料、預堆14天堆積物及兩種堆肥化處理下各微生物族群菌落數(CFUs)…... 45
(一) 原料與預堆14天堆積物之菌落數比較…………………………………….......45
1. 主要微生物群落比較 (細菌、真菌、放線菌)…………………………..…….….45
2. 植物有益微生物群落比較………………………………………………………....47
3. 病原菌群落比較 (大腸桿菌、沙門氏菌)……………………………………..….48
(二) 一般堆肥化與蚓糞堆肥化55天之菌落數比較……………………………......50
1. 主要微生物群落比較 (細菌、真菌、放線菌)……………………………….…..50
2. 植物有益微生物群落比較…………………………………….………………...…53
二、原料、預堆14天堆積物及兩種堆肥化處理下好氧異營細菌分離株16S rDNA分析…………………………………………………….……………………………....55

(一) 豬糞與養菇廢棄包混合原料(OW)、預堆14天堆積物(PCW)與各堆肥化處理下(BK55、COM55、VM55) 細菌分離株菌屬分類…………………..…….....................57
1. 豬糞與養菇廢棄包混合原料、預堆14天堆積物中細菌分離株菌屬分類與菌群比較…………………………………………………………………………………….....57
2. 各堆肥化處理下細菌分離株菌屬分類與預堆14天堆積物中菌群比較……………………………………………………………………………….……....58
3. 一般堆肥與蚓糞堆肥中菌群比較…………………………………………………59
三、原料、預堆14天堆積物及兩種堆肥化處理下經選殖株基因庫構築 (clone
libraries) 微生物基因型分析………..……………………………..………………….62
(一) 豬糞與養菇廢棄包混合原料(OW)、預堆14天堆積物(PCW)與各堆肥化處理下 (BK55、COM55、VM55) 整體細菌群落菌門 (phylum) 分類……………………62
1. 豬糞與養菇廢棄包混合原料(OW)、預堆14天堆積物 (PCW)中細菌群落菌門分類與比較……………………………………………………………………………….62
2. 各堆肥化處理下 (BK55、COM55、VM55) 細菌群落菌門分類與預堆14天堆積物中菌群比較………………………………………….………………………………63
3. 一般堆肥與蚓糞堆肥中菌群比較……………………………………………..…..65
(二) 豬糞與養菇廢棄包混合原料(OW)、預堆14天堆積物(PCW)與各堆肥化處理下 (BK55、COM55、VM55)整體細菌族群菌屬 (genus)分類…………………………65
1. 豬糞與養菇廢棄包混合原料 (OW)、預堆14天堆積物 (PCW) 中細菌群落菌屬分類與比較…………………………………………………………………………….67
2. 各堆肥化處理下細菌群落菌屬分類與預堆14天堆積物中菌群比……………..68
3. 一般堆肥與蚓糞堆肥中菌群比較………………………………………………....70
四、原料、預堆14天堆積物及兩種堆肥化處理下細菌族群16S rDNA進行
變性膠體梯度電泳(DGGE)分析………………………………………..….................75
陸、結論…………………………………………………………………………….....77
柒、參考文獻………………………………………………………………………….78
捌、別錄…………………………………………………………………………….…90
王明光,汪碧涵,賴朝明,趙維良,田志仁。2008。土壤為生物多樣性監測。第54至64頁。台灣大學農業化學系出版。
林財旺。1999。禽畜糞堆肥之製造。堆肥製造技術。第107至141頁。
林叡呈。2012。蚓糞堆肥與禽畜糞堆肥之單獨或混合施用對甘藍生育及土壤肥力 之影響。國立中興大學土壤環境科學系碩士學位論文
林詩耀。2007。重油降解細菌之基因型及表現型特性研究。國立中興大學土壤環境科學系碩士學位論文。
行政院農業委員會。2008。禽畜糞堆肥製作及施用手冊。
行政院環境保護署。2013。全國事業廢棄物申報統計表。
行政院環境保護署。2014。農業廢棄物管理策略。
邱建忠。2014。蛋雞糞低調整材添加之快速堆肥化研究。國立中興大學土壤環境科學系碩士論文。
陳永仁、劉崑山。1998。「我國垃圾處理課題及政策」。環境教育季刊。第三頁。
陳雲成。2008。應用鏈黴菌Streptomyces spp.防治植物真菌性病害與植物寄生性線蟲病害。國立中興大學植物病理學系碩士論文。
沈佛亭。2006。Gordonia菌屬放線菌之分子偵測、分類及鑑定。國立中興大學土壤環境科學系博士學位論文。
楊紹榮。 1992。 農業廢棄物處理與再利用。台南區農業專訊創刊號。
張玉瓏、徐乃芝、許素菁。2009。生物技術。新文京開發出版股份有限公司。第4版。第106至121頁。
張臻穎。2007。長期施用肥料對根圈螢光假單孢菌之效應。國立中興大學土壤環境科學系博士學位論文。
連淑美。2005。演化樹建立方法之分析與比較。淡江大學資訊工程學系碩士在職專班碩士學位論文。
彭啟益。2001。磺胺劑對好氣式堆肥處理嗜高溫菌之藥物敏感性試驗。國立中興大學獸醫學研究所碩士學位論文。
詹明泓。2014。不同預堆時間之豬糞與菇類養殖廢棄包的混合物對蚯蚓生長與蚓 糞堆肥的影響。國立中興大學土壤環境科學系碩士學位論文。
鄭世鑫。2011。堆肥大腸桿菌在土壤與小白菜中之存活。國立中興大學碩士論文。
蔡青芬。2011。評估不同組合有機廢棄物對蚯蚓生長及蚓糞堆肥特性的影響。國立中興大學碩士論文。
Abraham, W.-R., C. Strompl, H. Meyer, S. Lindholst, E.R.B. Moore, R. Christ, M. Vancanneyt, B.J. Tindall, A. Bennasar, J. Smit, and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. International journal of systematic bacteriology 49: 1053–1073.
Aira, M., F. Monroy, and J. Dominguez. 2007. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Science of the Total Environment 385: 252-261.
Aira, M., and J. Dominguez. 2009. Microbial and nutrient stabilization of two animal manures after the transit through the gut of the earthworm Eisenia fetida (Savigny, 1826). Journal of Hazardous Materials 161: 1234-1238.
Allen, O.N. 1957. Experiments in soil bacteriology. Burgess Pub. Co., Minneapolis.
Anastasi, A., G.Cristina Varese and V. Filipello Marchisio. 2005. Isolation and
identification of fungal communities in compost and vermicompost. Mycologia
97: 33-34.
Anastasi, A., G.C. Varese, S. Voyron, S. Scannerini and V.F. Marchisio. 2004. Characterization of fungal biodiversity in compost and vermicompost. Compost science & utilization 12: 185-191.
Bai, H.-J., Z.-M. Zhang, and J. Gong. 2006. Biological Synthesis of Semiconductor Zinc Sulfide Nanoparticles by Immobilized Rhodobacter sphaeroides. Biotechnology Letters 28: 1135–1139.
Becking, J.H. 1959. Nitrogen-fixing bacteria of the genusBeijerinckia in South African soils. Plant Soil 11: 193–206.
Castillo, J.M., E. Romero and R. Nogales. 2013. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes. Bioresource technology 146: 345-354.
Chen, Q.-J., H.-M. Zhou, J. Chen, and X.-C. Wang. 2006. Using a modified TA cloning method to create entry clones. Analytical Biochemistry 358: 120-125.
Chistoserdova, L., A. Lapidus, C. Han, L. Goodwin, L. Saunders, T. Brettin, R. Tapia, P. Gilna, S. Lucas, P.M. Richardson, and M.E. Lidstrom. 2007. Genome of Methylobacillus flagellatus, Molecular Basis for Obligate Methylotrophy, and Polyphyletic Origin of Methylotrophy. Journal of Bacteriology 189: 4020-4027.
Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry 39: 2971-2976.
Dandie, C.E., D.L. Burton, B.J. Zebarth, J.T. Trevors, and C. Goyer. 2007. Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems. Systematic and Applied Microbiology 30: 128–138.
Danon, M., I.H. Franke‐Whittle, H. Insam, Y. Chen and Y. Hadar. 2008. Molecular analysis of bacterial community succession during prolonged compost curing. FEMS microbiology ecology 65: 133-144.
Dominguez, J. and M. Gomez-Brandon. 2012. Vermicomposting: Composting with
Earthworms to Recycle Organic Wastes. In Tech. p.29-48.
Doronina, N.V., Y.A. Trotsenko, B.B. Kuznetzov, and T.P. Tourova. 2002. Emended description of Paracoccus kondratievae. International Journal of Systematic and Evolutionary Microbiology 52: 679-682.
D, Jorge., M. Aira, M. Gomez-Brandon. 2010. Vermicomposting: Earthworms enhance the work of microbes. In: H. Insam et al. (ed.) Microbes at work from wastes to resources, chap 5. 1st edit. p. 93-114.
Drake, H.L., and M.A. Horn. 2007. As the Worm Turns: The Earthworm Gut as a Transient Habitat for Soil Microbial Biomes. Annu. Rev. Microbiol. 61: 169-189.
Fernandez-Gomez, M.J., R. Nogales, H. Insam, E. Romero and M. Goberna. 2012. Use of DGGE and COMPOCHIP for investigating bacterial communities of various vermicomposts produced from different wastes under dissimilar conditions. Science of the Total Environment 414: 664-671.
Fracchia, L., A.B. Dohrmann, M.G. Martinotti and C.C. Tebbe. 2006. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Applied microbiology and biotechnology 71: 942-952.
Frederickson, J., G. Howell and A.M. Hobson. 2007. Effect of pre-composting and vermicomposting on compost characteristics. European Journal of Soil Biology 43: S320-S326.
Fornes, F., D. Mendoza-Hernandez, R. Garcia-de-la-Fuente, M. Abad and R.M. Belda. 2012. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresource technology 118: 296-305.
Fuerst, J.A., J.A. Hawkins, A. Holmes, L.I. Sly, C.J. Moore, and E. Stackebrandt. 1993. Porphyrobacter neustonensis gen. nov., sp. nov., an Aerobic Bacteriochlorophyll- Synthesizing Budding Bacterium from Fresh Water. International journal of systematic bacteriology 43: 125-134.
Fujii, K., K. Ikeda, S. Yoshida. 2012. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms. International Microbiology 15:121-130.
Garcia, C., T. Hernandez and F. Costa. 1997. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis 28: 123-134.
Gerhardt, P., R.G.E. Murray, W.A. Wood, and N.R. Kreig. 1994. Polymerase chain reaction. Methods for Genaral and Molecular Bacteriology. 19: 419-432.
Gopal, M., A. Gupta, E. Sunil and G.V. Thomas. 2009. Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Current microbiology 59: 15-20.
Gopalakrishnan, S., B.K. Kiran, P. Humayun, M.S. Vidya, K. Deepthi, S. Jacob, et al. 2013. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost. African Journal of Biotechnology 10: 18142-18152.
Gomez-Brandon, M., M. Aira, M. Lores, and J. Dominguez. 2011a. Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresource Technology 102: 4171-4178.
Gomez-Brandon, M., M. Aira, M. Lores, and J. Dominguez. 2011b. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes. PLoS ONE 6: e24786.
Gonzalez, J.M. and C. Saiz-Jimenez. 2005. Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. International Microbiology 8: 189.
Gopal, M., A. Gupta, E. Sunil, and G.V. Thomas. 2009. Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Current Microbiology 59: 15-20.
Gunadi, B., C. Blount and C.A. Edwards. 2002. The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia 46: 15-23.
Hattori, N., M. Kaido, T. Nishigaki, K. Inui, H. Fujimura, T. Nishimura. 1999. Undetectable dystrophin can still result in a relatively benign phenotype of dystrophinopathy. Neuromuscular Disorders 9: 220-226.
Hong, S. W., J. S. Lee, et al. 2011. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (eisenia fetida) in vermicompost. Bioresource Technology 102: 6344-6347.
Hultman, J., J. Kurola, A. Rainisalo, M. Kontro and M. Romantschuk. 2010. Utility of molecular tools in monitoring large scale composting. Microbes at Work. Springer p. 135-151.
Hyun-Jung Kim, K.-H.S. 2004. Analysis of Aerobic and Culturable Bacteria Community Structures in Earthworm (Eisenia fetida) Intestine. Journal of the Korean Society for Applied Biological Chemistry 47.
Insam, H., I. Franke-Whittle and M. Goberna. 2010. Microbes in aerobic and anaerobic waste treatment. Springer p. 1-34.
Johnson, B.H. and M.H. Hecht. 1994. Recombinant proteins can be isolated from E. coli
cells by repeated cycles of freezing and thawing. Bio-Technology 12:1357-1360.
Johnsen, K., and P. Nielsen. 1999. Diversity of Pseudomonas strains isolated with
King’s B and Gould’s S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation. FEMS Microbiology Letters
173: 155-162.
Kumar Srivastava, P., P.C. Singh, M. Gupta, A. Sinha, A. Vaish, A. Shukla. 2011.
Influence of earthworm culture on fertilization potential and biological activities of vermicomposts prepared from different plant wastes. Journal of Plant Nutrition and Soil Science 174: 420-429.
King, A.D., A.D. Hocking, and J.I. Pitt. 1979. Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Applied Environmental Microbiology 37: 959-964.
Kohlerova, P., A. Beschin, et al. 2004. Effect of experimental microbial challenge on
the expression of defense molecules in Eisenia foetida earthworm. Developmental & Comparative Immunology 28: 701-711.
Lazcano, C., M. Gomez-Brandon and J. Dominguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72: 1013-1019.
LaMontagne, M., F.C. Michel Jr, P. Holden and C. Reddy. 2002. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods 49: 255-264.
Lechner, U., D. Brodkorb, R. Geyer, G. Hause, C. Hartig, G. Auling, F. Fayolle- Guichard, P. Piveteau, R.H. Muller, and T. Rohwerder. 2007. Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology 57: 1295-1303.
Lee, K.-C., R.I. Webb, P.H. Janssen, P. Sangwan, T. Romeo, J.T. Staley, and J.A. Fuerst. 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiology 9: 5.
Lemunier, M., C. Francou, S. Rousseaux, S. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts. Applied Environmental Microbiology 71: 5779-5786.
Liu, Y., J.-H. Jin, Y.-H. Liu, Y.-G. Zhou, and Z.-P. Liu. 2010. Dongia mobilis gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a sequencing batch reactor for treatment of malachite green effluent. International Journal of Systematic and Evolutionary Microbiology 60: 2780-2785.
Li, X., H. Xu, Z.-S. Chen, and G. Chen. 2011. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater 2011: e270974.
Manuel Aira, F.M. 2007. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microbial Ecology 54: 62-71.
Maughan, P.J., T.B. Turner, C.E. Coleman, D.B. Elzinga, E.N. Jellen, J.A. Morales, et al. 2009. Characterization of Salt Overly Sensitive 1 (SOS 1) gene homoeologs in quinoa (Chenopodium quinoa Wilid.). Genome 52: 647-657.
Minz, D., S.J. Green, M. Ofek and Y. Hadar. 2010. Compost microbial populations and interactions with plants. Microbes at Work. Springer p. 231-251.
Muyzer, G., E.C. Dewaal and A.G. Uitterlinden. 1993. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16s ribosomal-RNA. Applied and Environmental Microbiology 59: 695-700.
Mupondi, L.T., P.N.S. Mnkeni, and P. Muchaonyerwa. 2010. Effectiveness of combined thermophilic composting and vermicomposting on biodegradation and sanitization of mixtures of dairy manure and waste paper. African Journal of Biotechnology 9: 4754-4763.
Nair, J., V. Sekiozoic, and M. Anda. 2006. Effect of pre-composting on vermicomposting of kitchen waste. Bioresource. Technology 97: 2091-2095.
Nakai, R., M. Nishijima, N. Tazato, Y. Handa, F. Karray, S. Sayadi, H. Isoda, and T. Naganuma. 2014. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. International Journal of Systematic and Evolutionary Microbiology 64: 3353-3359.
Nawani, N. and B. Kapadnis. 2003. Chitin degrading potential of bacteria from extreme
and moderate environment. Indian journal of experimental biology 41: 248-254.
Ndegwa, P. and S. Thompson. 2001. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource technology 76: 107-112.
Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R.I. Amann, W. Ludwig,
and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology 178: 5636-5643.
Olsen, G.J., D.J. Lane, S.J. Giovannoni, N.R. Pace and D.A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annual reviews in microbiology 40: 337-365.
Pradhan, N., and L.B. Sukla. 2009. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology.
Raphael, K. and K. Velmourougane. 2010. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation 22: 497-507.
Rettedal, E.A., S. Clay and V.S. Brozel. 2010. GC-clamp primer batches yield 16S rRNA gene amplicon pools with variable GC clamps, affecting denaturing gradient gel electrophoresis profiles. Fems Microbiology Letters 312: 55-62.
Rodriguez-Canche, L.G., L. Cardoso Vigueros, T. Maldonado-Montiel and M. Martinez-Sanmiguel. 2010. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida. Bioresour Technol 101: 3548-3553.
Ryckeboer, J., J. Mergaert, J. Coosemans, K. Deprins and J. Swings. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology 94: 127-137.
Singh, D. and S. Suthar. 2012. Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresource technology 112:179-185.
Sen, B. and T.S. Chandra. 2009. Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresource technology 100: 804-811.
Snell-Castro, R., J.-J. Godon, J.-P. Delgenes, and P. Dabert. 2005. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiology Ecology 52: 229-242.
Sorokin, D.Y., A.M. Lysenko, L.L. Mityushina, T.P. Tourova, B.E. Jones, F.A. Rainey,
L.A. Robertson, and G.J. Kuenen. 2001. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic ulfur-oxidizing bacteria from soda lakes. International Journal of Systematic and Evolutionary Microbiology 51: 565-580.
Shaw, L.J., G.W. Nicol, Z. Smith, J. Fear, J.I. Prosser, and E.M. Baggs. 2006.
Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology 8: 214-222.
Thongdee, M., L.A. Gallagher, M. Schell, T. Dharakul, S. Songsivilai and C. Manoil. 2008. Targeted mutagenesis of Burkholderia thailandensis and Burkholdetia pseudomallei through natural transformation of PCR fragments. Applied and Environmental Microbiology 74: 2985-2989.
Tognetti, C., F. Laos, M.J. Mazzarino and M.T. Hernandez. 2005. Composting vs. vermicomposting: A comparison of end product quality. Compost Science & Utilization 13: 6-13.
Tsai, Y.-L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology 57: 1070-1074.
Vivas, A., B. Moreno, S. Garcia-Rodriguez and E. Benitez. 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource technology 100: 1319-1326.
Watanabe, K., Y. Kodama and S. Harayama. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods 44: 253-262.
Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and Two Genospecies of the Genus Sphingomonas. Microbiology Immunology 34: 99-119.
Yasir, M., Z. Aslam, S.W. Kim, S.W. Lee, C.O. Jeon and Y.R. Chung. 2009. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresource technology 100: 4396-4403.
Yasir, M., H. Khan, S.S. Azam, A. Telke, S.W. Kim and Y.R. Chung. 2013. Cloning and functional characterization of endo-β-1,4-glucanase gene from metagenomic library of vermicompost. Journal of Microbiology 51: 329-335.
Zhou M. Y, C. E. Gomez-Sanchez. 2000. Universal TA cloning. Caister Academic Press 2 : 1-7.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top