跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪子騫
研究生(外文):Hong, Zi-Chian
論文名稱:應用於可攜式產品之高效率雙模式降壓轉換器設計
論文名稱(外文):Design of a Dual-Mode High-Efficiency Buck Converter for Portable Applications
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Yeh, Mei-Ling
口試委員:林嘉洤黃淑絹葉美玲
口試委員(外文):Lin, Jia-ChuanHuang, Shu-ChuanYeh, Mei-Ling
口試日期:2016-12-23
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:降壓轉換器脈衝寬度調變脈衝省略調變轉換效率
外文關鍵詞:Buck converterPSMPWMConversion efficiency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來可攜式電子產品市場快速成長,產品功能趨向多元化,對於電源的有效利用更為重要,因此電源管理模組的微型化與轉換效率成為首要考量,影響電源管理模組大小的關鍵在於外接儲能電感與輸出電容的大小,因此我們提高切換頻率以縮小電感、電容尺寸,達到微型化的目的,但操作於高切換頻率時,輕負載的轉換效率並不理想,為了提高輕負載的效率,本論文使用雙調變模式架構與智慧切換控制兩種解決方式。

本論文提出一高切換頻率,並於寬負載範圍均有高轉換效率之雙模式降壓轉換器,以電流模式設計,並使用脈衝寬度調變模式(PWM)及脈衝省略調變模式(PSM)實現。為了降低輕載時的切換損失,在輕載時使用脈衝省略調變,重載時使用脈衝寬度調變,並將功率電晶體分為三組,依照負載電流大小,開啟相對應的功率電晶體。本設計分為四個負載範圍,將切換損失最佳化,以提高轉換效率。

本論文以TSMC 0.35um 2P4M 3.3/5V mixed-signal CMOS製程設計與實現, 輸入電壓範圍在3V ~ 4.2V,輸出電壓為1.8V,操作頻率在10MHz,負載電流範圍為50mA ~ 500mA,轉換效率最高可達86.66%。使用電感值0.5uH,負載電容值10uF,有效縮小外接被動元件尺寸,適合應用於可攜式產品。
In recent years, the portable electronic devices market is flourishing quickly and product features tend to be diversification. The miniaturization of power management modules and improvement of conversion efficiency become the primary consideration.
The major impact of the power management module size is the size of the external inductor and output capacitor. In order to achieve the purpose of miniaturization, we increase the switching frequency to reduce inductance and capacitance sizes. However, the conversion efficiency at light loads is not well when operating at high switching frequency. Therefore, this thesis presents dual-mode and smart switching control to improve efficiency at light loads.

In this thesis, we use current mode, pulse width modulation (PWM) and pulse skipping modulation (PSM) to achieve a high conversion efficiency and high switching frequency dual-mode buck converter with a wide load range. In order to reduce the switching losses at light loads, the converter operates in pulse skipping modulation during light loads, and when at heavy load, the converter operates in pulse width modulation. Moreover, the power transistors are divided into three groups, and according to the load current to open the relative power transistors. This design consists of four load ranges, and optimizes the switching loss to improve the conversion efficiency.

This thesis has been designed and implemented with TSMC 0.35um 2P4M 3.3/5V mixed-signal CMOS process. With input voltage ranging from 3.0 to 4.2 V, the output voltage is 1.8V. The operating frequency is 10MHz. The load current range can be 50mA ~ 500mA. The maximum conversion efficiency is 86.66%. The size of inductor is 0.5uH and the value of capacitor is 10uF. This can effectively reduce external passive component sizes, and is suitable for portable product applications.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1研究背景與動機 1
1.2論文架構 3
第二章 直流-直流穩壓器概論 4
2.1線性穩壓器 4
2.2交換式穩壓器 5
2.2.1交換式降壓穩壓器 5
2.2.2交換式升壓穩壓器 6
2.2.3交換式升降壓穩壓器 8
2.3交換式電容穩壓器 9
2.4穩壓器規格之定義 10
2.4.1暫態響應 10
2.4.2轉換效率 11
2.4.3輸出電壓漣波 12
2.4.4線性穩壓調節率 13
2.4.5負載穩壓調節率 13
第三章 高效率雙模式降壓穩壓器設計 14
3.1交換式穩壓器控制模式 14
3.1.1電壓控制模式 14
3.1.2電流控制模式 15
3.2交換式穩壓器調變模式 17
3.2.1脈衝寬度調變模式 17
3.2.2脈衝省略調變模式 19
3.3交換式降壓穩壓器導通模式 21
3.3.1連續導通模式 21
3.3.2非續導通模式 23
3.4交換式穩壓器穩定度分析 25
3.4.1 TYPE-II補償 25
3.4.2次諧波振盪 28
3.4.3斜率補償 30
3.5智慧切換控制 32
3.6系統架構與規格 34
第四章 子電路設計與模擬 36
4.1偏壓電路 36
4.2誤差放大器 38
4.3遲滯比較器 43
4.4帶差參考電壓電路 45
4.5軟啟動電路 47
4.6 RS-Latch 49
4.7鋸齒波與時脈產生電路 50
4.8電流感測電路 52
4.9電壓轉電流電路 55
4.10非同步導通電路 57
4.11零電流偵測電路 59
4.12 PWM調變電路 60
4.13 PSM調變電路 61
4.14智慧切換控制電路 62
第五章 模擬結果與晶片佈局 63
5.1設計流程 63
5.2晶片佈局與考量 64
5.3量測考量 66
5.4輸出電壓漣波 66
5.5線性穩壓調節率 69
5.6負載穩壓調節率 70
5.7智慧切換模擬 72
5.8效率總結 72
5.9文獻比較 74
第六章 結論與未來展望 75
6.1結論 75
6.2未來展望 76
參考文獻 77
[1] 台達電子產品資料,http://www.deltaww.com/Products/CategoryListT1.aspx?CI D=040101&PID=ALL&hl=zh-TW
[2] G. A. Rincon-Mora and P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,” IEEE J.Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan. 1998.
[3] W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable Applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[4] Chun-Ting Kuo, “A High Efficiency Dual-Mode Boost Regulator,” Master Thesis, National Taiwan Ocean University, Jun. 2006.
[5] Y. Z. Ma, J. Cheng, and G. C. Chen, “A High Efficiency Current Mode Step-Up/Step-Down DC-DC Converter with Smooth Transition,” IEEE 9th International Conference on ASIC, pp. 108-111, Oct. 2011.
[6] P. Favrat, P. Deval and M. J. Declercq, “A High-Efficiency CMOS Voltage Doubler,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 410-416, Mar. 1998.
[7] B. M. King, “Understanding the Load-Transient Response of LDOs,” Texas Instrument Analog Application Journal, pp. 19-21, Nov. 2000.
[8] Xunwei Zhou, Mauro Donati, Luca Amoroso and Fred C. Lee, “Improved Light-Load Efficiency for Synchronous Rectifier Voltage Regulator Module,” Power Electronics, IEEE Transactions on, vol. 15, issue 5, pp. 826-834, Sep. 2000.
[9] Y. Wang, W. Liu, H. Ma and L. Chen, “Resonance Analysis and Soft-Switching Design of Isolated Boost Converter with Coupled Inductors for Vehicle Inverter Application,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1383-1392, 2015.
[10] C. F. Lee and P. K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 3-13, Jan. 2004.
[11] S. Ramamurthy and P. V. Ranjan, “Pulse Skipping Modulated Buck Converter-Modeling and Simulation,” Circuits and Systems, no. 1, pp. 59-64, Oct. 2010.
[12] Randall Shaffer, Fundamentals of Power Electronics with MATLAB, 高立圖書有限公司,2008.
[13] H. Choi, “Practical Feedback Loop Design Considerations for Switched Mode Power Supplies,” Fairchild Semiconductor Power Seminar, 2010 – 2011.
[14] J. T. Mossoba and P. T. Krein, “Small Signal Modeling of Sensorless Current Mode Controlled DC-DC Converters,” IEEE Workshop on Computers in Power Electronics, Proceedings, pp. 23-28, June 2002.
[15] Chan-I Chiu, “On the Implementation of an Ultra-Wide-Load High-Efficient DC-DC Buck Converter,” Master Thesis, National Central University, 2012.
[16] 立錡科技鋰離子電池應用設計, http://www.richtek.com/battery-management/ tw/designing-liion.html
[17] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston, MA: McGraw-Hill, 2001.
[18] David A. Johns, Analog Integrated Circuit Design, A Wiley-Interscience, 1997.
[19] John Wiley and Sons, Introduction to CMOS OP-AMPs and Comparators, A Wiley-Interscience, 1999.
[20] Ka Nang Leung and P. K. T. Mok, “A Sub-1-V 15-ppm/°C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 526-530, 2002.
[21] Fang, Sih-Yao, “Design of a Wide-Load-Range DC-DC Buck Converter with High Efficiency and High Switching Frequency,” Master thesis, National Taiwan Ocean University, January 2015.
[22] Bryan A. Legates, “Low Voltage Current Sense Amplifier,” United States Patent, Patent Number 5,969,574, 19 Oct. 1999.
[23] Changsik Yoo, “A CMOS Buffer without Short-Circuit Power Consumption,” IEEE Transactions on Circuits and Systems II, vol. 47, pp. 935-937, Sept. 2000.
[24] Shih-Chi Chen, “Design of a Dual-Mode Single-Inductor Dual-Output Buck Converter,” Master thesis, National Taiwan Ocean University, July 2014.
[25] Mengmeng Du, Hoi Lee and Jin Liu, “A 5-MHz 91% Peak-Power-Efficiency Buck Regulator with Auto-Selectable Peak-and Valley-Current Control,” IEEE Journal of Solid-State Circuits, pp. 1928-1939, 2011.
[26] Shaowei Zhen, Bo Zhang, Ping Luo, Sijian Hou, Jingxin Ye and Xiao Ma, “A Digitally Controlled PWM/PSM Dual-Mode DC/DC Converter,” Journal of Semiconductors, vol. 32, pp. 103-109, Nov 2011.
[27] Meng-Hsueh Wu, Jia-Chuan Lin, Yu-Chi Tsui and Pei-Han Kuan, “Design of a PWM Multiple Switch Control and High Efficiency Current Mode DC to DC Boost Converter for Portable Devices,” ISEEE International Conference, pp. 1408-1411, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊