跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江立人
研究生(外文):Li-Ren Chiang
論文名稱:自動乳房超音波之腫瘤診斷
論文名稱(外文):Automated Whole Breast Ultrasound Tumor Diagnosis
指導教授:張瑞峰張瑞峰引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:52
中文關鍵詞:超音波自動全乳房超音波診斷分類形狀橢圓
外文關鍵詞:UltrasoundABUSdiagnosisclassificationshapeellipsoid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳癌一直是女性癌症中的主要死因,但是只要早期檢測與醫治就能大幅提高其治癒率。近年來,由於電腦輔助診斷系統發展快速,已經不只能偵測腫瘤,還能對腫瘤進行分析診斷,因此,對於病患的切片檢查次數就能相對減低。近年來,為了提供臨床上快速檢查的乳房攝影工具,因此研發新的自動全乳房超音波機器。在這篇論文中,使用了自動超音波影像來進行實驗。首先,先對腫瘤區域以等位函數法進行自動腫瘤切割,接著,依據切割出來的腫瘤輪廓進行灰階值共生矩陣的紋理分析,傳統形狀資訊分析,以及建立與腫瘤有最小距離相合的橢球模型,並作此橢球與腫瘤的異同點分析,我們即依據此三類的特徵分析來做為診斷的依據。本實驗中使用了147個經過病理驗證的腫瘤,其中包括了76個良性病例以及71個惡性病例,重複以不同種類組合的特徵,以邏輯回歸分析的方式,在留一交互驗證的規約下作準確性的測試。從實驗結果來看,橢球特徵和傳統形狀特徵相結合有較高的準確率,可以達到85.03%(125/147),敏感性達到84.51%(60/71),特異性85.53%(65/76),ROC曲線面積0.9466,總合上述結果,我們相信自動全乳房超音波不僅能用來做乳房腫瘤的檢查,還能用來做已偵測出的腫瘤診斷。

In the past, breast cancer is the major cause of death for women among all kinds of cancer. But the curability of breast cancer can be greatly improved if a proper treatment is adopted after an early detection. In recent years, the computer-aided diagnosis systems have been developed rapidly and they can not only detect the tumors but also differentiate malignant tumors from benign ones. Hence the demand of the breast biopsy of the detected tumors might be further reduced. Recently, the new automated whole breast ultrasound (ABUS) machines have also been developed in order to provide a fast screening tool as the routine clinical used mammography. In this paper, the ABUS images are used for the diagnosis of tumors. At first, the three-dimensional (3-D) tumor contour is segmented by using the automated level-set segmentation method. Then, the features including the texture information based on co-occurrence matrix, shape information, and ellipsoid fitting information are extracted based on the segmented 3-D tumor contour to classify the benign and malignant tumors. In the experiment, there are 147 pathologyproven cases, including 76 benign tumors and 71 malignant ones, are used to test the diagnosis performance of the logistic regression model with a leave-one-out cross validation based on the proposed features. From the experiment results, it is found that ellipsoid fitting features combined with traditional shape features can achieve a better performance with accuracy 85.03% (125/147), the sensitivity 84.51% (60/71), specificity 85.53% (65/76), and the area under the ROC curve Az 0.9466. Hence, the ABUS images could be used not only for screening the breast cancers but also diagnosing the detected tumors.

論文口試委員審定書 i
ACKNOWLEDGEMENTS ii
摘要 iii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Material 5
2.1 Patients and Lesion Characters 5
2.2 Data Acquisition 5
Chapter 3 The Proposed Method 8
3.1 Tumor Segmentation 9
3.1.1 Contrast-Enhanced Gradient Image 10
3.1.1.1 Sigmoid filter operation 11
3.1.1.2 Sigma filter 11
3.1.1.3 Gradient magnitude filter 12
3.1.2 Level set method 14
3.1.3 Hole filling using morphology closing operation 17
3.2 Feature Extraction 19
3.2.1 Texture-based Features 19
3.2.2 Shape Features 21
3.2.3 Ellipsoid Fitting Features 22
Chapter 4 Experimental Results and Discussion 27
4.1 Statistic Analysis 27
4.2 Feature Analysis 29
4.3 Tumor Classification 30
4.4 Discussion 43
Chapter 5 Conclusion 46
Reference 48


[1]W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, and K. Boparai, "Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer," JAMA, vol. 299, pp. 2151-63, May 14 2008.
[2]M. Nothacker, V. Duda, M. Hahn, M. Warm, F. Degenhardt, H. Madjar, S. Weinbrenner, and U. S. Albert, "Early detection of breast cancer: Benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review," BMC Cancer, vol. 9, p. 335, 2009.
[3]P. B. Gordon and S. L. Goldenberg, "Malignant breast masses detected only by ultrasound. A retrospective review," Cancer, vol. 76, pp. 626-30, Aug 15 1995.
[4]T. M. Kolb, J. Lichy, and J. H. Newhouse, "Occult cancer in women with dense breasts: Detection with screening us--diagnostic yield and tumor characteristics," Radiology, vol. 207, pp. 191-9, Apr 1998.
[5]A. Izumori, K. Takebe, and A. Sato, "Ultrasound findings and histological features of ductal carcinoma in situ detected by ultrasound examination alone," Breast Cancer, vol. 17, pp. 136-41, Apr 2010.
[6]M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, and E. White, "Breast density as a predictor of mammographic detection: Comparison of interval- and screen-detected cancers," J. Natl. Cancer Inst., vol. 92, pp. 1081-7, Jul 5 2000.
[7]T. M. Kolb, J. Lichy, and J. H. Newhouse, "Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: An analysis of 27,825 patient evaluations," Radiology, vol. 225, pp. 165-75, Oct 2002.
[8]J. A. Harvey and V. E. Bovbjerg, "Quantitative assessment of mammographic breast density: Relationship with breast cancer risk," Radiology, vol. 230, pp. 29-41, Jan 2004.
[9]Y. Kotsuma, Y. Tamaki, T. Nishimura, M. Tsubai, S. Ueda, K. Shimazu, S. Jin Kim, Y. Miyoshi, Y. Tanji, T. Taguchi, and S. Noguchi, "Quantitative assessment of mammographic density and breast cancer risk for japanese women," Breast, vol. 17, pp. 27-35, Feb 2008.
[10]D. S. Buist, P. L. Porter, C. Lehman, S. H. Taplin, and E. White, "Factors contributing to mammography failure in women aged 40-49 years," J. Natl. Cancer Inst., vol. 96, pp. 1432-40, Oct 6 2004.
[11]I. Leconte, C. Feger, C. Galant, M. Berliere, B. V. Berg, W. D''Hoore, and B. Maldague, "Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: The importance of radiologic breast density," AJR Am. J. Roentgenol., vol. 180, pp. 1675-9, Jun 2003.
[12]P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, "Using sonography to screen women with mammographically dense breasts," AJR Am. J. Roentgenol., vol. 181, pp. 177-82, Jul 2003.
[13]Y. Ikedo, D. Fukuoka, T. Hara, H. Fujita, E. Takada, T. Endo, and T. Morita, "Development of a fully automatic scheme for detection of masses in whole breast ultrasound images," Med. Phys., vol. 34, pp. 4378-88, Nov 2007.
[14]D. Kotsianos-Hermle, K. M. Hiltawsky, S. Wirth, T. Fischer, K. Friese, and M. Reiser, "Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound," Eur. J. Radiol., vol. 71, pp. 109-115, Jul 2009.
[15]K. M. Kelly, J. Dean, W. S. Comulada, and S. J. Lee, "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," Eur. Radiol., vol. 20, pp. 734-742, 2010.
[16]R. F. Chang, K. C. Chang-Chien, E. Takada, C. S. Huang, Y. H. Chou, C. M. Kuo, and J. H. Chen, "Rapid image stitching and computer-aided detection for multipass automated breast ultrasound," Med. Phys., vol. 37, pp. 2063-2073, 2010.
[17]S. P. Sinha, M. M. Goodsitt, M. A. Roubidoux, R. C. Booi, G. L. LeCarpentier, C. R. Lashbrook, K. E. Thomenius, C. L. Chalek, and P. L. Carson, "Automated ultrasound scanning on a dual-modality breast imaging system - coverage and motion issues and solutions," J. Ultrasound Med., vol. 26, pp. 645-655, May 2007.
[18]G. Narayanasamy, G. L. LeCarpentier, M. Roubidoux, J. B. Fowlkes, A. F. Schott, and P. L. Carson, "Spatial registration of temporally separated whole breast 3D ultrasound images," Med. Phys., vol. 36, pp. 4288-4300, Sep 2009.
[19]W. C. Shen, R. F. Chang, W. K. Moon, Y. H. Chou, and C. S. Huang, "Breast ultrasound computer-aided diagnosis using BI-RADS features," Acad. Radiol., vol. 14, pp. 928-939, Aug 2007.
[20]W. C. Shen, R. F. Chang, and W. K. Moon, "Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS)," Ultrasound Med. Biol., vol. 33, pp. 1688-1698, Nov 2007.
[21]D. R. Chen, R. F. Chang, and Y. L. Huang, "Computer-aided diagnosis applied to us of solid breast nodules by using neural networks," Radiology, vol. 213, pp. 407-12, Nov 1999.
[22]K. Kalmantis, C. Dimitrakakis, C. Koumpis, A. Tsigginou, N. Papantoniou, S. Mesogitis, and A. Antsaklis, "The contribution of three-dimensional power doppler imaging in the preoperative assessment of breast tumors: A preliminary report," Obstet Gynecol Int, vol. 2009, p. 530579, 2009.
[23]W. M. Chen, R. F. Chang, S. J. Kuo, C. S. Chang, W. K. Moon, S. T. Chen, and D. R. Chen, "3-D ultrasound texture classification using run difference matrix," Ultrasound Med. Biol., vol. 31, pp. 763-770, 2005.
[24]S. F. Huang, R. F. Chang, W. K. Moon, Y. H. Lee, D. R. Chen, and J. S. Suri, "Analysis of tumor vascularity using three-dimensional power doppler ultrasound images," IEEE Trans. Med. Imaging, vol. 27, pp. 320-30, Mar 2008.
[25]R. F. Chang, S. F. Huang, W. K. Moon, Y. H. Lee, and D. R. Chen, "Solid breast masses: Neural network analysis of vascular features at three-dimensional power doppler us for benign or malignant classification," Radiology, vol. 243, pp. 56-62, 2007.
[26]J. A. Sethian, Level set methods : Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge University Press, 1996.
[27]J. A. Sethian, Level set methods and fast marching methods : Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd ed. Cambridge, U.K. ; New York: Cambridge University Press, 1999.
[28]R. M. Haralick, "Statistical and structural approaches to texture," Proc. IEEE, vol. 67, pp. 786-804, 1979.
[29]R. M. Haralick, Shanmuga.K, and I. Dinstein, "Textural features for image classification," IEEE Trans. Syst. Man Cybern., vol. SMC3, pp. 610-621, 1973.
[30]W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, "Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images," Magn. Reson. Med., vol. 58, pp. 562-571, Sep 2007.
[31]J. S. Suri, C. Kathuria, R.-F. Chang, F. Molinari, and A. Fenster, Advances in diagnostic and therapeutic ultrasound imaging. Norwood, MA: Artech House, 2008.
[32]R. C. Gonzalez, R. E. Woods, and B. R. Masters, Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008.
[33]J. S. Lee, "Digital image smoothing and the sigma filter," Comput Vision Graph, vol. 24, pp. 255-269, 1983.
[34]Y. J. Yu and S. T. Acton, "Speckle reducing anisotropic diffusion," IEEE Trans. Image Process., vol. 11, pp. 1260-1270, Nov 2002.
[35]Q. L. Sun, J. A. Hossack, J. S. Tang, and S. T. Acton, "Speckle reducing anisotropic diffusion for 3D ultrasound images," Comput. Med. Imaging Graph., vol. 28, pp. 461-470, Dec 2004.
[36]K. Krissian, C. F. Westin, R. Kikinis, and K. G. Vosburgh, "Oriented speckle reducing anisotropic diffusion," IEEE Trans. Image Process., vol. 16, pp. 1412-1424, May 2007.
[37]A. V. Alvarenga, W. C. A. Pereira, A. F. C. Infantosi, and C. M. Azevedo, "Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images," Med. Phys., vol. 34, pp. 379-387, Feb 2007.
[38]L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, "Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system," J. Magn. Reson. Imaging, vol. 25, pp. 89-95, Jan 2007.
[39]E. Bribiesca, "An easy measure of compactness for 2D and 3D shapes," Pattern Recognit., vol. 41, pp. 543-554, Feb 2008.
[40]K. F. Mulchrone and K. R. Choudhury, "Fitting an ellipse to an arbitrary shape: Implications for strain analysis," J. Struct. Geol., vol. 26, pp. 143-153, 2004.
[41]Q. Zhu and L.-K. Poh, "A transformation-invariant recursive subdivision method for shape analysis," in Pattern Recognition, 1988., 9th International Conference on, 1988, pp. 833-835 vol.2.
[42]A. Ulanovsky and G. Prohl, "A practical method for assessment of dose conversion coefficients for aquatic biota," Radiat. Environ. Biophys., vol. 45, pp. 203-214, Sep. 2006.
[43]D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000.
[44]E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004.
[45]A. P. Field, Discovering statistics using spss, 3rd ed. Los Angeles: SAGE Publications, 2009.
[46]J. Behnke, "Discovering statistics using spss.," Polit Vierteljahr, vol. 47, pp. 751-753, Dec 2006.
[47]K. Kira and L. A. Rendell, "A practical approach to feature selection," presented at the Proceedings of the ninth international workshop on Machine learning, Aberdeen, Scotland, United Kingdom, 1992.
[48]R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, pp. 273-324, Dec 1997.
[49]I. Kononenko, "Estimating attributes: Analysis and extensions of relief," presented at the Proceedings of the European conference on machine learning on Machine Learning, Catania, Italy, 1994.
[50]J. F. a. K. Kenney, E. S., "The chi-square distribution," in Mathematics of statistics, 2nd ed, 1951.
[51]R. C. Sprinthall, Basic statistical analysis, 8th ed.
[52]D. R. Chen, R. F. Chang, W. M. Chen, and W. K. Moon, "Computer-aided diagnosis for 3-dimensional breast ultrasonography," Arch. Surg., vol. 138, pp. 296-302, 2003.
[53]W. M. Chen, R. F. Chang, W. K. Moon, and D. R. Chen, "Breast cancer diagnosis using three-dimensional ultrasound and pixel relation analysis," Ultrasound Med. Biol., vol. 29, pp. 1027-1035, 2003.
[54]S. F. Huang, R. F. Chang, W. K. Moon, Y. H. Lee, D. R. Chen, and J. S. Suri, "Analysis of tumor vascularity using three-dimensional power doppler ultrasound images," IEEE Trans. Med. Imaging, vol. 27, pp. 320-330, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top