跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/22 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡致芳
研究生(外文):Chih-Fang Tsai
論文名稱:直接甲醇燃料電池陽極用高熵合金觸媒研究
論文名稱(外文):High-Entropy Alloy Nanoparticles as Electrocatalysts for Direct Methanol Fuel Cells
指導教授:林鵬林鵬引用關係吳樸偉
指導教授(外文):Pang LinPu-Wei Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:甲醇燃料電池觸媒高熵合金濺鍍法
外文關鍵詞:Direct Methanol Fuel CellCatalystHigh-Entropy AlloySputter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用葉君蔚教授所提出的高熵合金概念,選用過去被認為同樣具有抗CO毒化特性的Fe、Co、Ni、Cu、Ag與Pt形成六元奈米合金顆粒作為直接甲醇燃料電池(DMFC)陽極的催化劑,並利用濺鍍法製作催化層,以達到降低催化合金用量之目的。

使用X光繞射儀進行六元薄膜合金之結構與相鑑定,並以EDX分析組成成份,使用SEM觀察奈米顆粒微結構,最後進行電化學的CV量測以得知催化合金之甲醇氧化活性,並將CV進行前後的酸性電解液取出使用ICP-MS進行分析,確認其抗蝕性,為得知高熵合金之效應所在,本實驗並且將六元合金與二元合金之各項性質進行比較,並使用XPS分析其電子鍵能之變化量。

研究結果顯示,六元合金(Pt52Fe10Co9Ni9Cu12Ag8)僅具有fcc之單一相,並且形成數奈米的顆粒沉積在碳黑表面,催化活性約介於300-600 mA/cm2•mg左右,在沉積時間增長後,催化活性則有降低之情形,而分析進行完氧化測試的酸性電解液之結果發現其同樣具有良好的抗蝕性,沒有金屬溶出之現象。

在改變六元合金中的白金含量以進行甲醇氧化活性之研究中,發現白金含量減少會造成結晶度降低,然而仍為單一之fcc相,且其具有相似的表面形貌,由電化學分析結果可以得知52 atomic%之白金具有最佳催化活性。

對於將六元合金與二元合金進行比較之結果,發現PtCu具最佳之催化活性,而PtAg則因為容易形成較大顆粒,因此催化活性最低,六元合金則具有介於各合金間的各種性質,顯示多元成分造成的混合效應之影響。
In this study, fabrication and electrochemical characterization of high-entropy electrocatalyst on noncatalyzed gas diffusion electrode by RF sputter deposition was reported. XRD analysis of the as-deposited film exhibited a crystalline FCC phase while EDS confirmed its composition as Pt52Fe10Co9Ni9Cu12Ag8. SEM images revealed nanoparticles nodules growing on the carbon particles. Cyclic voltammetry (CV) was used to analyze its performance as anode electrocatalyst for direct methanol fuel cell. The area under CV curve was proportional to the amount of electrocatalyst deposited. However, in specific activity sample with 5 nm electrocatalyst demonstrated the highest values, 400~600 mA/cm2•mg. Our work presents invaluable information on electrochemical performance of high-entropy electrocatalyst.

High-entropy nanoparticles of PtxFe(100-x)/5Co(100-x)/5Ni(100-x)/5Cu(100-x)/5Ag(100-x)/5 (x = 22, 29, 52, 56) were then prepared by sputter deposition on pretreated carbon cloth. XRD patterns indicated crystalline FCC phases and SEM images revealed nanoparticulate nodules grown on surface of carbon particles with their average sizes increasing with deposition time. Cyclic voltammetry demonstrated enhancements of catalytic performance with increasing Pt amount. However, in specific activity Pt52Fe11Co10Ni11Cu10Ag8 exhibited the highest capability, reaching values as high as 504 and 462 mA/cm2•mg. This work provides invaluable information in unique electrocatalyst design using high-entropy concept.

Comparison of the properties of six-component alloys and binary alloys Pt-M (M= Fe, Co, Ni, Cu, Ag) were studied in last part. All the phases of binary alloys were fcc as identified by XRD. In addition, the morphologies of PtFe, PtCo, and PtCu were similar in their nodules structure to that of Pt52Fe10Co9Ni9Cu12Ag8. In contrast, PtAg formed a large particle on carbon black. The PtCu showed the highest catalytic activity, and PtAg was the poorest because of its large of particles size and weak strength of M-O bonding. The six-component alloy exhibited characteristics between each binary alloys, imply the mixing effects of the multi-components.
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅲ
致謝.....................................................Ⅴ
主目錄...................................................Ⅵ
圖目錄...................................................Ⅷ
表目錄...................................................XI
第一章 前言.............................................1
1.1 研究背景...........................................1
1.2 研究動機及目的.....................................2
第二章 文獻回顧.........................................4
2.1 燃料電池...........................................4
2.1.1 燃料電池工作原理...............................4
2.1.2 燃料電池分類...................................4
2.2 直接甲醇燃料電池...................................5
2.2.1 直接甲醇燃料電池工作原理.......................5
2.2.2 甲醇在白金電極上之反應途徑.....................7
2.2.3 陽極材料觸媒種類..............................10
2.2.4 多元合金做為陽極催化劑之研究..................12
2.3 高熵合金..........................................14
2.3.1 高熵合金開發背景..............................14
2.3.1.1 非晶質合金簡介...........................14
2.3.1.2 高熵合金.................................15
2.3.2 高熵合金的特點................................16
2.3.3 高亂度合金的抗蝕性研究........................18
2.4 濺鍍法原理........................................20
2.4.1 射頻磁控濺鍍..................................21
2.4.2 濺鍍法合成陽極催化層..........................21
第三章 實驗方法與流程..................................29
3.1 實驗藥品與設備....................................29
3.1.1 金屬靶材......................................29
3.1.2 實驗藥品......................................29
3.1.3 實驗用氣體....................................29
3.1.4 實驗設備......................................30
3.2 觸媒製備方法......................................30
3.2.1 靶材製備流程..................................30
3.2.2 高熵合金催化層製備流程........................31
3.3 分析方法..........................................31
3.3.1 X光繞射分析儀 ................................32
3.3.2 掃描式電子顯微鏡與能量散佈分析儀..............32
3.3.3 電化學分析儀..................................33
3.3.4 感應偶合電漿質譜儀............................34
3.3.5 X光螢光光譜儀 ................................34
第四章 結果與討論......................................41
4.1 濺鍍時間對PtFeCoNiCuAg六元合金之甲醇氧化行為之影響 ..............................................41
4.2 改變多元合金中白金含量之影響.....................53
4.3 PtFeCoNiCuAg與Pt-M二元合金在甲醇氧化行為之比較..66
第五章 結論............................................85
第六章 未來工作........................................87
第七章 參考文獻........................................88
[1] Hogarth, M. P.; Ralph, T. R. Platinum Metals Rev. 2002, 46, 146.
[2] Lariminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd edition, John Wiley & Sons Ltd., 2003.
[3] Vielstich, W.; Lamm, A.; Gasteiger, H. A., Handbook of Fuel Cells, John Wiley & Sons Ltd., 2003.
[4] Herrero, E.; Franaszczuk, K.; Wieckowski, A. Journal of Physical Chemistry 1994, 98, 5074.
[5] Zhu, Y.; Uchida, H.; Yajima, T.; Watanabe, M. Langmuir 2001, 17, 146.
[6] Markovic, N. M.; Ross, P. N. Surface Science Reports 2002, 45, 121.
[7] Watanabe, M.; Motoo, S. J. Electroana. Chem. 1975, 60, 275.
[8] Waszczuk, P.; Lu, G. Q.; Wieckowski, A.; Lu, C.; Rice, C.; Masel, R. I. Electrochimica Acta 2002, 47, 3637.
[9] Yajima, T.; Uchida, H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108, 2654.
[10] Uchida, H.; Ozuka, H.; Watanabe, M. Electrochimica Acta 2002, 47, 3629.
[11] Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. Journal of the Electrochemical Society 2003, 150, A973.
[12] Antolini, E.; Salgado, J. R. C.; dos Santos, A. M.; Gonzalez, E. R. Electrochemical and Solid State Letters 2005, 8, A226.
[13] Bagchi, J.; Bhattacharya, S. K. Journal of Power Sources 2007, 163, 661.
[14] Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.
[15] Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H.; Liu, P.; Norskov, J. K. Journal of Physical Chemistry B 2003, 107, 11013.
[16] Whitacre, J. F.; Valdez, T.; Narayanan, S. R. Journal of the Electrochemical Society 2005, 152, A1780.
[17] Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Journal of Physical Chemistry 1993, 97, 12020.
[18] Jusys, Z.; Kaiser, J.; Behm, R. J. Electrochimica Acta 2002, 47, 3693.
[19] Page, T.; Johnson, R.; Hormes, J.; Noding, S.; Rambabu, B. Journal of Electroanalytical Chemistry 2000, 485, 34.
[20] Igarashi, H.; Fujino, T.; Zhu, Y. M.; Uchida, H.; Watanabe, M. Physical Chemistry Chemical Physics 2001, 3, 306.
[21] Martinez, S.; Zinola, C. F. Journal of Solid State Electrochemistry 2007, 11, 947.
[22] Arico, A. S.; Poltarzewski, Z.; Kim, H.; Morana, A.; Giordano, N.; Antonucci, V. Journal of Power Sources 1995, 55, 159.
[23] Gurau, B.; Viswanathan, R.; Liu, R. X.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. Journal of Physical Chemistry B 1998, 102, 9997.
[24] Choi, W. C.; Kim, J. D.; Woo, S. I. Catalysis Today 2002, 74, 235.
[25] Park, K. W.; Choi, J. H.; Lee, S. A.; Pak, C.; Chang, H.; Sung, Y. E. Journal of Catalysis 2004, 224, 236.
[26] Shukla, A. K.; Raman, R. K.; Choudhury, N. A.; Priolkar, K. R.; Sarode, P. R.; Emura, S.; Kumashiro, R. Journal of Electroanalytical Chemistry 2004, 563, 181.
[27] Wang, Z. B.; Yin, G. P.; Zhang, J.; Sun, Y. C.; Shi, P. F. Electrochimica Acta 2006, 51, 5691.
[28] Lee, S. A.; Park, K. W.; Choi, J. H.; Kwon, B. K.; Sung, Y. E. Journal of the Electrochemical Society 2002, 149, A1299.
[29] Wang, Z. B.; Yin, G. P.; Shi, P. F.; Sun, Y. C. Electrochemical and Solid State Letters 2006, 9, A13.
[30] Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. Journal of Electroanalytical Chemistry 2005, 580, 145.
[31] Kramer, J. Z. Phys. 1934, 37, 639.
[32] Kramer, J. Annln Phys. 1934, 37, 19.
[33] Bremer, A.; Couch, D. E.; Williams, E. K., J. Res. Natn. Bur. Stand. 1950, 44, 109.
[34] Duwes, P. Trans. Am. Soc. Metals 1967, 60, 607.
[35] Kui, H. W.; Greer, A. L.; Turnbull, D. Applied Physics Letters 1984, 45, 615.
[36] Inoue, A.; Kita, K.; Masumoto, T.; Ohtera, K. Japanese journal of Applied Physics Part 2 Letters 1998, 10, 1796.
[37] Inoue, A.; Kita, K.; Masumoto, T. Materials Transactions 1989, 30, 9, 722.
[38] 黃國雄,「等莫耳比多元合金系統之研究」,國立清華大學,碩士論文,民國85年。
[39] Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Advanced Engineering Materials 2004, 6, 299.
[40] Ranganathan, S. Current Science 2003, 85, 1404.
[41] Chen, T. K.; Wong, M. S.; Shun, T. T.; Yeh, J. W. Surface& Coatings Technology 2005, 200, 1361.
[42] 陳彥羽,洪育德,葉均蔚,施漢章`,「高亂度合金的金相與電化學極化之研究-在室溫下與其他鋼材做比較」,防蝕工程,第十八卷第一期,第25-40頁,民國93年3月。
[43] Bunshah, R. F. et al., Deposition Technologies for Films and Coatings, Noyes, 1982.
[44] 真空技術與應用,行政院國家科學委員會精密儀器發展中心出版,九十三年十月。
[45] O'Hayre, R.; Lee, S. J.; Cha, S. W.; Prinz, F. B. Journal of Power Sources 2002, 109, 483.
[46] Cha, S. Y., Lee W. M. J. Electrochem. Soc. 1999, 146, 4055.
[47] Witham, C. K.; Chun, W.; Valdez, T. I.; Narayanan, S. R. Electrochemical and Solid State Letters 2000, 3, 497.
[48] Haug, A. T.; White, R. E.; Weidner, J. W.; Huang, W.; Shi, S.; Stoner, T.; Rana, N. Journal of the Electrochemical Society 2002, 149, A280.
[49] Xiu, Y. K.; Nakagawa, N. Journal of the Electrochemical Society 2004, 151, A1483.
[50] Alvisi, M., Galtieri, G., Giorgi, L., Giorgi, R., Serra, E., Signore, M.A. Surface& Coatings Technology 2005, 200, 1325.
[51] Haug, A. T.; White, R. E.; Weidner, J. W.; Huang, W.; Shi, S.; Rana, N.; Grunow, S.; Stoner, T. C.; Kaloyeros, A. E. Journal of the Electrochemical Society 2002, 149, A868.
[52] Caillard, A.; Coutanceau, C.; Brault, P.; Mathias, J.; Leger, J. M. Journal of Power Sources 2006, 162, 66.
[53] Tsai, M. C.; Yeh, T. K.; Tsai, C. H. Electrochemistry Communications 2006, 8, 1445.
[54] Emsley, J., The Elements, New York, Oxford , 1989.
[55] Gu, Y. J.; Wong, W. T. Journal of the Electrochemical Society 2006, 153, A1714.
[56] Wang, Z., Liu, Y., Linkov, V. M. Journal of Power Sources 2006, 160, 326.
[57] Kulesza, P. J.; Matczak, M.; Wolkiewicz, A.; Grzybowska, B.; Galkowski, M.; Malik, M. A.; Wieckowski, A. Electrochimica Acta 1999, 44, 2131.
[58] Gu, Y. J.; Wong, W. T. Langmuir 2006, 22, 11447.
[59] Lide, D. R.; Frederikse, H.P.R. CRC Handbook of Chemistry and Physics, 76th edition, Boca Raton, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top