一、中文部分:
王文科 (2000)。質的教育研究方法。台北:師大書苑。
邱上真(1989)。後設認知研究在輕度障礙者教學上的應用。特殊教育季刊,30,12-16。胡永崇(1996)。後設認知策略教學對國小閱讀障礙學童閱讀理解成效之研究。國立屏東師院特殊教育中心。
涂金堂(1998)。後設認知理論之介紹。菁莪,9(4),58-66。
凃金堂(1999)。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),122-137。
郭諭陵(1992)。後設認知之探討。中等教育,43(4),92~100。
陳小玲(2006)。以經驗、察覺、歸納、概念建立教學為導向之國小二年級學生成法概念學習歷程及成效之探究。國立台南大學應用數學研究所碩士論文。張世忠(2001)。建構教學-理論與應用。台北:五南。
教育部(編)(2003)。國民中小學九年一貫課程綱要數學學習領域。台北:教育部。
陳李綢(1990)。近代後設認知理論的發展與研究趨勢。資優教育季刊,37,9-12。許美華(2000)。國小二年級學童正整數乘法問題解題活動類型之縱貫研究。國立屏東師範學院國民教育研究所碩士論文。張春興(1994)。教育心理學-三化取向的理論與實際。台北:東華。
張春興(1997)。教育心理學。台北:東華。
陳淑琳(2002)。國小二年級學童乘法文字題解題歷程之研究—以屏東市一所國小為例。國立屏東師範學院數理教育研究所碩士論文。陳澤民(譯)(1995)。Richard R. Skemp著。數學學習心理學(The Psychology of Learning Mathematics)。台北市:九章。
甯自強(1994)。新課程對乘法啟蒙教材的處理。載於甯自強主編,國立嘉義師範學院八十二學年度數學教育研討會暨會議實錄彙編,163-173。嘉義:國立嘉義師範學院。
黃敏晃(1994)。國民小學數學新課程之精神。輯於國民小學數學科新課程概說(低年級),1-19。台北縣:台灣省國民學校教師研習會。
鄭麗玉(1993)。認知心理學-理論與應用。台北:五南。
謝淡宜(1990)。小學數學「真正理解學習」及「如何解題」教法研究。台南師院學報,23,265-290。
鍾聖校(1992)。認知心理學。台北:心理。
二、英文部分:
Anghileri, J. (1989). An investigation of young children''s understanding of multiplication. Educational Studies in Mathematics, 20, 367-385.
Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanism. InF. E. Weinert & R. H. Kluwe (Ed), Metacognition, motivation, and understanding. Hillside, NJ: LawrenceErlbaum.
Christou, C., & Philippou, G. (1998). The developmental nature of ability to solve one-step word problem. Journal for Research in Mathematics Education, 29(4),436-442.
Flavell, J. H. (1976). Metacognitive and cognitive monitoring : A new area of cofnitive development inquiry .American Psychologist , 34 , 906-911.
Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Eds.). Handbook of research on mathematics teaching learning. 276- 295. Reston, VA: NCTM.
H.J. Hartman(ed). Metacognition in learning and lnstruction (pp.229-243). Netherlands:Kluwer Acdemic Publishers.
Jacqueline Grennon Brooks&Martin G. Brooks,(1999).The Case For Constructivist Classrooms. Alexandria, Virginia USA: Association for Supervision and Curriculum Development.
Mayer, R.E. (1992). Thinking, problem solving, cognition. New York:W. H. Freeman and Company.
McCoy, L.P. (1994). Mathematics problem–solving processes of elementary male and female students. School Science & Mathematics, 94 (5), 266-271.
Mulligan, J.T.(1992). Children''s Solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), 24 - 41.
Mulligan, J. T., & Mitchelmore, M. C.(1997). Young children''s Intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), 309-330.
Pairs, S. G. &Gross, d. R. (1988). Developmental and instructional analyses of Children’s metacognition and reading comprehension. Journal of Education Psychology , 80 , 131-142.
Polya, G., (1945). How to solve it: A new aspect of mathematical method. New Jersey: Princeton University Pre
Pressley, M., Borkowski, J.G., & O’Sullivan (1985).Children’s metamemory and the teaching of memorystrategies. In D. L. Forrest-Pressley, G. E. Mackinnon,& T. G. Waller (Eds.), Metacognition, cognition, andhuman performance: Theoretical perspectives(pp.111-153). Orlando, FL: Academic Press.
Richard M. Felder and L.K. Silverman(1988). Learning and Teaching Styles in Engineering Education . Engineering Education .78(7),674-681.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.
Skemp, R. (1987). The Psychology of Learning Mathematics. Harmonds worth: Pengnin.
Vygotsky,L.S.(1978).Mild in society:The development of higher psychological processes. Translated by Knox and Carol. Cambridge, MA:Harvard University Press.