|
[1]Y. Wu, S. Kumar, F. Hu, Y. Zhu, and J.D. Matyjas, “Cross-Layer Forward Error Correction Scheme Using Raptor and RCPC Codes for Prioritized Video Transmission Over Wireless Channels, IEEE transactions on circuits and systems for video technology ,Vol. 24, No. 6, pp. 1047-1060, Jun. 2014. [2]I. de Fez and J.C. Guerri, “An Adaptive Mechanism for Optimal Content Download in Wireless Networks, IEEE transactions on Multimedia, Vol. 16, No. 4, pp. 1140-1155, Jun. 2014. [3]F.A. Ali, P. Simoens, W. Van de Meerssche, and B. Dhoedt, “Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel, Journal of Communications and Networks, Vol. 16, No. 3, pp. 322 – 334, Jun. 2014. [4]C.H. Shih, “Enhancing Packet-level Forward Error Correction for Streaming Video in Wireless Networks, IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, pp. 146-155, Sep. 2012. [5]J. Xiao, T. Tillo, and Y. Zhao, “Real-Time Video Streaming Using Randomized Expanding Reed-Solomon Code, IEEE Trans. On Circuits and Systems for Video Technology, Vol. 23, No. 11, pp. 1825-1836, Nov. 2013. [6]J. Xiao, T. Tillo , C. Lin , Y. Zhang , and Y. Zhao, “A Real-Time Error Resilient Video Streaming Scheme Exploiting the Late- and Early-Arrival Packets, IEEE Transactions on Broadcasting, Vol. 59, No. 3, pp. 432-444, Sep. 2013. [7]J. Xiao , T. Tillo , C. Lin , and Y. Zhao, “Dynamic Sub-GOP Forward Error Correction Code for Real-Time Video Applications, IEEE Transactions on Multimedia, Vol. 14, No. 4, pp. 1298-1308, Aug. 2012. [8]C.H. Lin, Y.C. Wang, C.K. Shieh, and W.S. Hwang, “An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs, Computer Networks, Vol. 56, No. 11, pp. 2590-2599, Jul. 2012. [9]C. Díaz, J. Cabrera, F. Jaureguizar, and N. García, A video-aware FEC-based unequal loss protection system for video streaming over RTP, IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, pp. 523-531, May. 2011. [10]J. Feng, C. Xuefen, P. Lin, W. Yining, and L. Guan, “Adaptive FEC algorithm based on prediction of video quality and bandwidth utilization ratio, Journal of Ambient Intelligence and Humanized Computing ,Vol. 1, No. 4, pp. 309-318, Dec. 2010. [11]Y. Sohn, J. Hwang, and S.S. Kang, “Adaptive Packet-Level FEC Algorithm for Improving the Video Quality over IEEE 802.11 Networks, International Journal of Software Engineering and Its Applications, Vol. 6, No. 3, Jul. 2012. [12]S. Zare, and A. G. Rahbar, “Congestion control in IPTV over PON using Digital Fountain forward error correction, Journal of Network and Computer Applications, Vol. 37, pp. 240–252, Jan. 2014. [13]P. Ostovari, and J. Wu, “Reliable Broadcast with Joint Forward Error Correction and Erasure Codes in Wireless Communication Networks, 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 324-332, Oct. 2015. [14]W. Ji , W. Zhang , X. Peng, and Z. Liang, “16-channel two-parallel reed-solomon based forward error correction architecture for optical communications, 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 239–243, Jul. 2015. [15]A. de la Fuente, C. M. Lentisco, L. Bellido, R. P. Leal, E. Pastor, and A. G. Armada, “Analysis of the impact of FEC techniques on a multicast video streaming service over LTE, 2015 European Conference on Networks and Communications (EuCNC), pp. 219-223, Jul. 2015. [16]J. M. Batalla, “Advanced multimedia service provisioning based on efficient interoperability of adaptive streaming protocol and high efficient video coding, Journal of Real-Time Image Processing, Mar. 2015. [17]K. Park, and W. Willinger, “Self-similar network traffic and performance evaluation, John Wiley & Sons Inc., 2000. [18]K. Park, and W. Wang, “QoS-sensitive transport of real-time MPEG video using adaptive redundancy control, Computer Communications, Vol. 24, No. 1, pp. 78-92, Jan. 2001. [19]M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol Specification, RFC3448, Jan. 2003. [20]J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation, IEEE/ACM Transactions on Networking, Vol. 8, No. 2, pp. 133-145, Apr. 2000. [21]H. Wu, M. Claypool, and R. Kinicki, “Adjusting Forward Error Correction with Temporal Scaling for TCP-Friendly Streaming MPEG, ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 1, No. 4, pp. 315–337, Nov. 2005. [22]Y. Li, Z. Li, M. Chiang, and A. R. Calderbank,“Content-Aware Distortion-Fair Video Streaming in Congested Networks, IEEE Transaction on Multimedia, Vol. 11, No. 6, Oct. 2009. [23]Y. L. Chang, T. L. Lin, and P. C. Cosman, “Network-Based H.264/AVC Whole-Frame Loss Visibility Model and Frame Dropping Methods, IEEE Transactions on Image Processing, Vol. 21, No. 8, pp. 3353-3363, Aug. 2012. [24]Y. Yuan, B. F. Cockburn, T. Sikora, and M. Mandal, “Efficient allocation of packet-level forward error correction in video streaming over the internet, Journal of Electronic Imaging, Vol.16, No. 2, Apr. 2007. [25]C.I. Kuo, C.K. Shieh, W.S. Hwang, and C.H. Ke, “Performance modeling of FEC-based unequal error protection for H.264/AVC video streaming over burst-loss channels, Int. J. Commun. Syst., Jun. 2014. [26]C.I. Kuo, C.H. Shih, C.K. Shieh, W.S. Hwang, and C.H. Ke, “Modeling and Analysis of Frame-Level Forward Error Correction for MPEG Video over Burst-Loss Channels, Appl. Math. Inf. Sci., Vol. 8, No.4, pp. 1845-1853, 2014. [27]Z. Li , J. Chakareski, L. Shen, and L. Wang, Video Quality in Transmission over Burst-Loss Channels: A Forward Error Correction Perspective, IEEE Communication Letters, Vol. 15, No. 2, pp. 238-240, Feb. 2011. [28]Z. Li , J. Chakareski, X. Niu, Y. Zhang, and W. Gu, “Modeling of Distortion Caused by Markov-model Burst Packet Losses in Video Transmission, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 19, No. 7, pp. 917–931, Jul. 2009. [29]M. Natkaniec, and A. R. Pach, “Simulation Analysis of Multimedia Streams Transmission in IEEE 802.11 Networks, ISWC’99 IEEE International Symposium on Wireless Communications, Victoria, Canada, Jun. 1999 [30]U. K. Sarkar, S. Ramakrishnan, and D. Sarkar, “Modeling full-length video using Markov-modulated Gamma-based framework, IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 638–649, 2003. [31]S. Tanwir and H. Perros, “A Survey of VBR Video Traffic Model, IEEE Communications Surveys & Tutorials, Vol. 15, No. 4, pp. 1778-1802, Nov. 2013. [32]D.M. Lucantoni, M.F. Neuts, and A.R. Reibman, “Methods for performance evaluation of VBR video traffic models, IEEE/ACM Transactions on Networking, Vol. 2, No. 2, pp. 176–180, Apr. 1994. [33]M. Nomura, T. Fujii, and N. Ohta, “Basic characteristics of variable rate video coding in ATM environment, IEEE J. Sel. Areas Commun., vol. 7, no. 5, pp. 752–760, 1989. [34]H. Koumaras, C. Skianis, and A. Kourtis, “Analysis and modeling of H.264 unconstrained VBR video traffic, International Journal of Mobile Computing and Multimedia Communication, IGI-Global, vol. 1, no. 4, pp. 4–31, July 2009. [35]F. Yegenoglu, B. Jabbari, and Y. Zhang, “Motion-classified autoregressive modeling of variable bit-rate video, Circuits Systems Video Technology, vol. 3, no. 1, pp. 42–53, 1993. [36]G. Chiruvolu, T. K. Das, R. Sankar, and N. Ranganathan, “A scene-based generalized Markov chain model for VBR video traffic, ICC 98, vol. 1, pp. 554–558, June 1998. [37]A. M. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model, IEEE/ACM Transactions on Networking, Vol. 6, No.5, pp. 635-644, Oct. 1998. [38]Y.H. Tseng, E.H.K. Wu, and G.H. Chen, “Scene-Change Aware Dynamic Bandwidth Allocation for Real-Time VBR Video Transmission Over IEEE 802.15.3 Wireless Home Networks, IEEE Transactions on Multimedia, Vol. 9, No. 3, pp. 642-654, Apr. 2007. [39]G. Chiruvolu, R. Sankar, and N. Ranganathan, “Adaptive VBR video traffic management for higher utilization of ATM networks, ACMSIGCOMM Comput. Commun. Rev., vol. 28, pp. 27–40, 1998. [40]S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed networks, IEEE Trans. Broadcast., vol. 48, no. 1, pp. 10–18, 2002. [41]S. Feng and R. Sankar, “Limitation of and improvement to linear prediction and smoothing-based bandwidth allocation for VBR traffic, in Proc. IEEE GLOBECOM ’99, 1999, vol. 1A, pp. 209–213. [42]Y. Liang, “Real-Time VBR Video Traffic Prediction for Dynamic Bandwidth Allocation, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and reviews, Vol. 34, No. 1, pp. 32-47, Feb. 2004. [43]Y. Liang and M. Han, “Dynamic Bandwidth Allocation Based on Online Traffic Prediction for Real-Time MPEG-4 Video Streams, EURASIP journal on Advances in Signal Processing, Vol. 2007. [44]S. Chong, S. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM, IEEE Journal on Selected Areas in Communications, vol. 13, no. 1, pp. 12–23, 1995. [45]A. Bhattacharya, A. G. Parlos, and A. F. Atiya, “Prediction of MPEG-coded video source traffic using recurrent neural networks, IEEE Transactions on Signal Processing, vol. 51, no. 8, pp. 2177–2190, 2003. [46]Haykin, S., “Adaptive filter theory, Prentice Hall, 1991. [47]HHI Fraunhofer Institute, H.264/AVC Reference Software. [Online]. Available: http://iphome.hhi.de/suehring/tml/ [48]EvalVid – A Video Quality Evaluation Tool. [Online] Available: http://www2.tkn.tu-berlin.de/research/evalvid/fw.html. [49]https://media.xiph.org/video/derf/ [50]ITU-T. Recommendation H.264, Advanced video coding for generic audiovisual services, 2010. [51]Haykin, S.: Neural Networks - A Comprehensive Foundation, New York: Macmillan College Publishing Company, 1994. [52]M. Oravec, J. Polec, S. Marchevský a kol.: Neural Networks for Digital Signal Processing (in Slovak language), Faber, Bratislava, 1998. [53]C. Kuo, C. Shih, C. Shieh, W. Hwang, Prediction-based loss recovery for frame-level streaming video, IEEE GLOBECOM Workshops, pp. 72-76, 2011.
|