跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪得時
研究生(外文):De-shih Hung
論文名稱:以二氧化碳進行水與異丙醇共沸分離之研究
論文名稱(外文):Azeotropic Separation of Aqueous Isopropanol with Supercritical Carbon Dioxide
指導教授:梁明在
指導教授(外文):Ming-tsai Liang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:狀態方程式異丙醇超臨界流體相平衡二氧化碳
外文關鍵詞:carbon dioxideAspen Plusequation of statesupercritical fluidisopropanolphase equilibrium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2671
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:1
本研究首先以相平衡計算軟體 PE 2000分別以 Peng-Robinson 狀態方程式與 Petel-Teja 狀態方程式搭配傳統雙參數混合律,進行二氧化碳-異丙醇、二氧化碳-水及異丙醇-水等三組雙成分系統之理論迴歸計算,求得最佳之交互作用參數。結果發現,Peng-Robinson 與 Petel-Teja 兩種狀態方程式,皆適用於上述三組雙成分系統之理論迴歸計算。
其次,利用求出之雙成分最佳交互作用參數,以 Peng-Robinson狀態方程式配合雙參數混合律,計算出二氧化碳-異丙醇-水三成分系統在溫度 338.15 K,壓力137.9及172.3 bar下的相平衡數據,結果與文獻的實驗數據吻合。然在 338.15 K /137.9 bar 條件下之相圖其樑線由二氧化碳豐富的氣相為端點輻射向外,與文獻所載由水豐富的液相為端點輻射向外之樑線不同,有可能是其溫度 338.15 K 略高於文獻之 333.15 K 造成。另外由 338.15 K 之相圖亦觀察到,其兩相區樑線形狀的改變壓力為 172.3 bar。
隨著環保意識的抬頭及溶劑價格高漲,廢溶劑的回收與再精製漸受重視。異丙醇廣泛應用平於面顯示器及半導體產業中,作為製程清洗用之溶劑,故本文另一研究主題為異丙醇水溶液的分離。傳統的異丙醇水溶液分離技術有共沸蒸餾、薄膜蒸發、反應萃取蒸餾以及鹽析萃取。本研究利用商業模擬軟體Aspen Plus,於溫度 333.15 K,壓力 100 bar下,進行實驗室規模超臨界二氧化碳萃取異丙醇水溶液製程之穩態模擬,並找出此製程之最適操作條件。結果發現,將 85 wt.% 異丙醇水溶液純化至99 wt.% 所需之理論板數,與文獻計算結果相近。
最後,將實驗室規模模擬所得之製程最適操作條件,進行超臨界二氧化碳萃取製程之放大模擬,估算其能源耗用約為傳統共沸蒸餾製程之 62.4%。值此能源價格高漲之際,超臨界二氧化碳萃取製程應為異丙醇水溶液分離值得推廣之另一選擇。
In this study, the Peng-Robinson equation of state and Petel-Teja equation of state with two-parameters mixing rule were used to fit the experimental data of the binary systems CO2-isopropanol, CO2-water, and isopropanol-water to find the binary interaction parameters by software PE 2000. The results showed that both equations of state are equally suitable for these three binary-systems.
With these interaction parameters from the three binary systems, the phase equilibrium of CO2-isopropanol-water at 338.15 K, 137.9 bar and 172.3 bar were found. The calculated results showed the two phase region were in good agreement with literatures, yet tie lines at 338.15 K and 137.9 bar were different from literature at 333.15 K and 132 bar. It was noted that a critical change of tie lines occurs at 172.3 bar along the increase of pressure at 338.15 K.
In addition, separation of aqueous isopropanol with supercritical carbon dioxide at 333.15 K and 100 bar was studied in this work. Aspen Plus was used to compute the theoretical number of plate with 85 wt.% aqueous isopropanol feed. The results were consistent with results from lab scale experiments. The optimum operation conditions were also determined. With the optimized conditions, a full scale unit for the azeotropic separation was simulated, and the estimated energy consumption was about 62.4% compared to traditional heterogeneous azeotropic distillation. This study shows that CO2 is an energy-saving alternative to azeotropic separation of isopropanol and water.
摘要I
Abstract III
誌謝IV
目錄V
圖目錄VIII
表目錄X
第一章 緒論1
1.1 前言1
1.2 超臨界流體2
1.2.1 超臨界流體之簡介2
1.2.2 超臨界流體之優缺點及其存在之問題7
1.2.3 超臨界流體之應用9
1.3 研究動機11
1.4 文獻回顧11
1.5 論文章節安排13
第二章 相平衡原理與計算14
2.1 前言14
2.2 相平衡理論14
2.3 狀態方程式與混合律17
2.4 相平衡計算21
2.5 結果與討論22
2.5.1 雙成分系統相平衡理論計算22
2.5.1.1 二氧化碳-異丙醇系統22
2.5.1.2 二氧化碳-水系統23
2.5.1.3 異丙醇-水系統23
2.5.2 三成分系統相平衡理論計算30
第三章 分離單元36
3.1 前言36
3.2 超臨界流體萃取流程36
3.3 相平衡39
3.3.1 相平衡關係表示方法39
3.3.2 二氧化碳-異丙醇-水三成分系統相平衡資料40
3.4 熱力學模式與參數49
3.5 製程模擬55
3.5.1 製程設計概念55
3.5.2 模擬結果分析55
3.5.2.1 分離壓力對異丙醇收率之影響56
3.5.2.2 S/F Ratio對萃取相中異丙醇濃度之影響56
3.5.2.3 萃取壓力對萃取相中異丙醇濃度之影響56
3.5.2.4 萃取溫度之影響57
3.5.2.5 回流比之影響57
3.5.3 模擬結果討論57
第四章 製程比較67
4.1 前言67
4.2 傳統共沸蒸餾製程67
4.3 超臨界二氧化碳萃取製程68
4.4 結果討論68
第五章 結論與未來展望72
5.1 結論72
5.2 未來展望73
參考文獻 74
附錄 85
圖目錄
圖1.1 超臨界流體在相圖上的位置3
圖1.2 純物質於臨界點附近之相圖5
圖2.1 泡點壓力計算法計算流程25
圖2.2 CO2-IPA雙成分系統汽液相平衡數據以Peng-Robinson及Petel-Teja狀態方程式關聯結果與實驗值之比較27
圖2.3 CO2-H2O雙成分系統汽液相平衡數據以Peng-Robinson及Petel-Teja狀態方程式關聯結果與實驗值之比較28
圖2.4 IPA-H2O雙成分系統汽液相平衡數據以Peng-Robinson及Petel-Teja狀態方程式關聯結果與實驗值之比較29
圖2.5 33315K下隨壓力變化之CO2-IPA-H2O三成分系統相圖32
圖2.6 以Peng-Robinson狀態方程式計算之CO2-IPA-H2O相平衡數據與實驗值之比較(338.15K,137.9 bar)33
圖2.7 以Peng-Robinson狀態方程式計算之CO2-IPA-H2O相平衡數據與實驗值之比較(338.15K,172.3 bar)34
圖3.1 超臨界二氧化碳分餾流程圖38
圖3.2 相對揮發度42
圖3.3 CO2-IPA-H2O系統於313.15K,103.4 bar 下之麥克-希爾圖44
圖3.4 CO2-IPA-H2O系統於318.15K,124.1 bar 下之麥克-希爾圖45
圖3.5 CO2-IPA-H2O系統於338.15K,137.9 bar 下之麥克-希爾圖46
圖3.6 CO2-IPA-H2O系統於338.15K,172.3 bar 下之麥克-希爾圖47
圖3.7 不同條件下之IPA/H2O分離因子及迴歸曲線48
圖3.8 Aspen Plus建立之超臨界二氧化碳萃取製程模擬流程圖52
圖3.9 實驗室規模之超臨界二氧化碳萃取製程模擬流程圖及結果60
圖3.10 分離壓力對IPA收率之影響61
圖3.11 S/F ratio 對萃取相中 IPA濃度之影響62
圖3.12 萃取壓力與塔頂IPA濃度之關係63
圖3.13 萃取溫度與塔頂/塔底濃度之關係64
圖3.14 回流比與塔頂IPA 濃度之關係65
圖4.1 異丙醇共沸蒸餾模擬流程圖及結果69
圖4.2 超臨界二氧化碳萃取模擬流程圖及結果70
表目錄
表1.1 氣體、超臨界流體及液體的特性4
表1.2 一些常用作超臨界萃取溶劑的流體之臨界性質6
表2.1 常用的立方型狀態方程式20
表2.2 以Peng-Robinson及Petel-Teja狀態方程式搭配傳統雙參數混合律所迴歸之雙成分交互作用參數26
表2.3 以Peng-Robinson狀態方程式搭配傳統雙參數混合律所迴歸之CO2-IPA-H2O系統最佳交互作用參數及計算之相平衡數據偏差值比較(338.15K)35
表3.1 二氧化碳-異丙醇-水三成分系統相平衡資料43
表3.2 高壓下常用的熱力學模式53
表3.3 Aspen Plus 迴歸之雙成分交互作用參數53
表3.4 不同熱力學模式之Aspen Plus模擬結果54
表3.5 Aspen Plus 模擬超臨界二氧化碳萃取之基本組織架構58
表3.6 Aspen Plus 模擬之設定操作條件59
表3.7 Aspen Plus 模擬超臨界二氧化碳萃取製程最適操作條件66
表4.1 異丙醇水溶液純化製程之能源耗用比較71
中文部份:
[1]朱自強,姚善強,韓兆熊, “超臨界流體萃取開發中的若干問題”,石油化工, vol.15, no.8, pp.512-518, 1986.
[2]朱自強,超臨界流體技術-原理和應用,化學工業出版社, 北京, 2000.
[3]行政院農委會農糧署網頁http://www.tnfd.gov.tw/index.php, Apr. 23, 2009.
[4]邱泓瑜,林河木,李明哲,“高壓汽液相平衡行為”,化工技術, vol.15, no.7, pp.108-121, 2007.
[5]邱國隆,“超臨界混合流體萃取銀杏葉的內酯及黃酮類之研究” ,國立中興大學化學工程研究所碩士論文, 1999.
[6]洪正宗, “生質柴油與生質化學品製程”, 2008生質煉油廠(Biorefinery)技術整合研討會,嘉義, July 2008.
[7]張心鴻, “應用超臨界二氧化碳清除蝕刻後殘餘污染物之研究”,國立交通大學電機資訊學院碩士論文, 2004.
[8]張冠甫,彭淑惠,周珊珊, “IPA廢水處理技術介紹”,永續產業雙月刊, no.37, pp.54-61, 2008.
[9]張富強,“以超臨界流體萃取和分離松杉靈芝成分” ,長庚大學化學工程研究所碩士論文, 2001.
[10]張瑞玉, “平面顯示器及半導體製程用之溶劑回收技術”,化工資訊與商情, no.24, pp.57-65, 2005.
[11]張瑞玉,工研院產業學院-蒸餾程序模擬與蒸餾塔設計研討會,高雄, Aug. 25, 2005.
[12]郭子禎, “超臨界流體技術發展現況與趨勢”,化工資訊與商情, no.5, pp.12-17, 2003.
[13]郭德文,張學明, “超臨界流體反應-易於分離純化之化工製程技術”,化工資訊與商情, no.5, pp.27-32, 2003.
[14]陳政群,吳石乙, “台灣超臨界流體技術應用與發展現況”,化工資訊與商情, no.30, pp.87-91, 2005.
[15]彭定宇,林河木,李明哲, “用於Peng-Robinson方程式之交互作用參數值及其應用”,化工技術, vol.13, no.9, pp.159-178, 2005.
[16]彭英利,馬承愚,超臨界流體技術應用手冊,化學工業出版社, 北京, 2005.
[17]廖傳華,黃振仁,超臨界CO2流體萃取技術-工藝開發及其應用,化學工業出版社, 北京, 2004.
[18]談駿嵩, “超臨界流體的應用”,科學發展月刊, no. 359, pp.12-17, 2002.
[19]鄭光煒,陳延平, “化工熱力學在超臨界技術上之研究”, 國立台灣大學台大工程學刊, no.84, pp.45-57, 2002.
[20]鄭曉芬, “都市下水污泥中DEHP之有效萃取及堆肥化處理技術之研究”,國立交通大學環境工程研究所博士論文, 2007.
[21]蘇至善,陳延平, “應用超臨界流體技術進行藥物微粒化之研發”,化工技術, vol.15, no.7, pp.168-178, 2007.
英文部份:
[1]A. Bamberger and G. Maurer, “High-Pressure (vapor + liquid ) equilibria in ( carbon dioxide + acetone or 2-propanol ) at temperature from 293K to 333K”, Journal of Chemical Thermodynamics, vol.32, no.5, pp.685-700, 2000.
[2]A. Bamberger, G. Sieder, G. Maurer, “High-Pressure (vapor + liquid ) equilibrium in ( carbon dioxide + water or acetic acid ) at temperature from 313K to 353K”, The Journal of Supercritical Fluids, vol.17, no.2, pp.97-110, 2000.
[3]A. F. Seibert, D. G. Moosberg, “Performance of Spray, Sieve Tray, and Packed Contactors for High Pressure Extraction”, Separation Science and Technology, vol.23, no.12-13, pp.2049-2063, 1988.
[4]A. Staby and J. Mollerup, “Mutual solubilities of mono-alcohols and carbon-dioxide- a review of experimental data”, Fluid Phase Equilibria, vol.89, no.2, pp.351-381, 1993.
[5]Aspen Plus, Release 11.1, Aspen Technology, Inc., 2001.
[6]B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The properties of Gases and Liquids, 5th ed., Ch.5, McGraw-Hill Inc., New York, 2001.
[7]B. M. M. Nogueira, M. F. Alfradique, M. Castier, “Modeling and simulation of supercritical extraction columns using computer algebra”, The Journal of Supercritical Fluids, vol.34, no.2, pp.203-208, 2005.
[8]B.-S Chun and G. T. Wilkinson, “Ternary Phase Equilibria of the Isopropanol + Water + Carbon Dioxide System at High Pressure”, The Korean Journal of Chemical Engineering, vol.16, no.2, pp.187-192, 1999.
[9]C. M. Wai and H. Ohde, “Synthesizing Nanoparticles in Supercritical Carbon Dioxide”, Journal Chin. Inst. Chem. Eng., vol.32, no.3, pp.253-261, 2001.
[10]D. S. H. Wong, S. I. Sandler, “A Theoretically Correct Mixing Rule for Cubic Equations of State”, AIChE Journal, vol.38, no.5, pp.671-680, 1992.
[11]D. W. Jennings, M. T. Gude, A. S. Teja, “High-Pressure vapor-liquid equilibria in carbon dioxide and 1-alkanol mixtures. In : Kiran E., Brennecke J.F., eds, Supercritical Fluids Engineering Science. ACS Symp. 514, Washington D.C.: ACS, 1993.10
[12]D. -Y. Peng, D. B. Robinson, “A New Two-Constant Equation of State”, Ind. Eng. Chem. Fundam., vol.15, no.1, pp.59-64, 1976.
[13]D. Zudkevitch, J. Joffe, “Correlation and prediction of vapor-liquid equilibria with the Redlich-Kwong equation of state”, AIChE Journal, vol.16, no.1, pp.112-119, 1970.
[14]E. C. Carlson, “Don’t Gamble With Physical Properties For Simulations”, Chemical Engineering Progress, pp.35-46, Oct. 1996.
[15]E. Sada and T. Morisue, “Isothermal vapor-liquid equilibrium data of isopropanol-water system”, Journal of Chemical Engineering of Japan, vol.8, no.3, pp.191-195, 1975.
[16]G. Brunner, Gas Extraction, Springer, New York, 1994.
[17]G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing”, Microelectronic Engineering , vol.65, no.1-2, pp.145-152, 2003.
[18]G. Soave, “Equilibrium constant from a modified Redlich-Kwong equation of state”, Chem. Eng. Sci., vol.27, no.6, pp.1197-1203, 1972.
[19]H. -I. Chen, H. -Y. Chang, P. -H. Chen, “High-Pressure Phase Equilibria of Carbon Dioxide + 1-Butanol, and Carbon Dioxide + Water + 1-Butanol Systems”, J. Chem. Eng. Data, vol.47, no.4, pp.776-780, 2002.
[20]H. -I. Chen, P. -H. Chen, H. -Y. Chang, “High-Pressure Vapor-Liquid Equilibria for CO2 + 2-Butanol, CO2 + Isobutanol, and CO2 + tert-Butanol Systems”, J. Chem. Eng. Data, vol.48, no.6, pp.1407-1412, 2003.
[21]H. Jin, B. Subramaniam, “Exothermic oxidations in supercritical CO2 : effects of pressure-tunable heat capacity on adiabatic temperature rise and parametric sensitivity”, Chem. Eng. Sci. , vol.58, no.9, pp.1897-1901, 2003.
[22]H. Renon, J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures”, AIChE Journal, vol.14, no.1, pp.135-144, 1968.
[23]http://www.tu-harburg.de/v8/gruppe-prof-smirnova/veroeffentlichungen/pe-2000.html, June 24, 2009.
[24]J. D. Seader, Separation Process Principle, 2th ed., Ch.11, John Wiley & Sons, Inc., 2006.
[25]J. F. Brennecke and C. A. Eckert, “Phase-equilibria for supercritical fluid process design”, AIChE Journal, vol.35, no.9, pp.1409-1427, 1989.
[26]J. Gmehling, J. Menke, J. Krafczyk, K. Fischer, Azeotropic Data – Part 1, WIELY-VCH, Germany, 2004.
[27]J. -H. Heo,, H. Y. Shin, J. -U. Park, S. N. Joung, S. Y. Kim, K. -P. Yoo, “Vapor-Liquid Equilibria for Binary Mixtures of CO2 with 2-Methyl-2-propanol, 2-Methyl-2-butanol, Octanoic Acid, and Decanoic Acid at Temperatures from 313.15 K to 353.15 K and Pressures from 3 MPa to 24 MPa”, J. Chem. Eng. Data, vol.46, no.2, pp.355-358, 2001.
[28]J. H. Yoon, H. Lee, and B. H. Chung, “High-pressure 3-phase Equilibria for the carbon dioxide-ethanol-water system”, Fluid Phase Equilibria, vol.102, no.2, pp.287-292, 1994.
[29]J. M. H. Levelt-Sengers, W. L. Greer, J. V. Sengers, “Scaled equation of state parameters for gases in the critical region”, Journal of Physical and Chemical Reference Data, vol.5, no.1, pp.1-51, 1976.
[30]J. M. Smith, H. C. Van Ness, M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th ed., Ch.14, McGraw-Hill Inc., New York, 2005.
[31]J. S. Lim, Y. G. Jung, K. -P. Yoo, “High-Pressure Vapor-Liquid Equilibria for the Binary Mixtures of Carbon Dioxide + Isopropanol (IPA)”, Journal of Chemical Engineering Data, vol.52, no.6, pp.2405-2408, 2007.
[32]L. A. Galicia-Luna, A. Ortega-Rodriguez, D. Richon, “New Apparatus for the Fast Determination of High-Pressure Vapor-Liquid Equilibria of Mixtures and of Accurate Critical Pressures”, Journal of Chemical Engineering Data, vol.45, no.2, pp.265-271, 2000.
[33]M. A. Anisimov, S. B. Kiselev, I. G. Kostukova, “A Scaled Equation of State for Real Fluids in the Critical Region”, International Journal of Thermophysics, vol.6, no.5, pp.465-481, 1985.
[34]M. Budich, G. Brunner, “Supercritical fluid extraction of ethanol from aqueous solutions”, The Journal of Supercritical Fluids , vol.25, no.1, pp.45-55, 2003.
[35]M. D. Bermejo and M. J. Cocero, “Supercritical Water Oxidation :A Technical Review”, AIChE Journal, vol.52, no.11, pp.3933-3951, 2006.
[36]M. E. Paulaitis, R. G. Kander and J. R. DiAndreth, “Phase Equilibria Related to Supercritical-Fluid Solvent Extraction”, Ber. Bunsenges. Phys. Chem. , vol.88, no.9, pp.869-875, 1984.
[37]M. E. Rybak, E. M. Calvey and J. M Harnly, “Quantitative determination of allicin in garlic: supercritical fluid extraction and standard addition of allicin”, Journal Agric. Food Chem., vol.52, no.4, pp.682-687, 2004.
[38]M. J. Lazzaroni, D. Bush, C. A. Eckert, R. Glaser, “High-pressure vapor-liquid equilibria of argon + carbon dioxide + 2-propanol”, The Journal of Supercritical Fluids , vol.37, no.2, pp.135-141, 2006.
[39]M. Radosz, “Vapor-Liquid Equilibrium for 2-Propanol and Carbon Dioxide”, Journal of Chemical Engineering Data, vol.31, no.1, pp.43-45, 1986.
[40]M. -T. Liang, “Separation of Aqueous Isopropanol by Supercritical CO2 Fractionation”, The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications, Taipei, Nov.20, 2005.
[41]M. Wendland, H. Hasse, G. Maurer, “Multiphase High-Pressure Equilibria of Carbon Dioxide-Water-Isopropanol”, The Journal of Supercritical Fluids, vol.6 , no.4, pp.211-222 , 1993.
[42]N. C. Patel, A. S. Teja, “A new cubic equation of state for fluids and fluid mixture”, Chemical Engineering Science, vol.37, no.3, pp.463-473, 1982.
[43]N. E. Durling, O. J. Catchpole, S. J. Tallon, J. B. Grey, “Measurement and modelling of the ternary phase equilibria for high pressure carbon dioxide-ethanol-water mixtures”, Fluid Phase Equilibria, vol.252, no.1-2, pp.103-113, 2007.
[44]N. V. Bhat, D. S. Wavhal, “Preparation of Cellulose Triacetate Pervaporation Membrane by Ammonia Plasma Treatment”, J. Appl. Polym. Sci., vol.76, no.2, pp.258-265, 2000.
[45]O. Pfohl, J. Petersen, R. Dohrn, G. Brunner, “Partitioning of carbohydrates in the vapor-liquid-liquid region of the 2-propanol+ water + carbon dioxide system”, The Journal of Supercritical Fluids, vol.10, no.2, pp.95-103 , 1997.
[46]P. Bezverkhii, V. Martynets, E. Matizen, “Nonparametric scaled equation of state and approximation of P-ρ-T data near the vapor-liquid critical point”, Journal of Experimental and Theoretical Physics , vol.99, no.5, pp.998-1004, 2004.
[47]P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino, E. E. Brock, “Reactions at supercritical conditions : applications and fundamentals”, AIChE Journal, vol.41, no.7, pp.1723-1778, 1995.
[48]P. J. Rathkamp, J. S. Bravo, J. R. Fair, “Evaluation of Packed Columns in Supercritical Extraction Processes”, Solvent Extraction and Ion Exchange, vol.5, no.3, pp.367-391, 1987.
[49]R. Dohrn, and G. Brunner, “High-pressure fluid-phase equilibria - experimental methods and systems investigated (1988-1993)”, Fluid Phase Equilibria, vol.106, no.1-2, pp.213-282, 1995.
[50]R. E. Fornari, P. Alessi , and I. Kikic, “High-pressure fluid phase equilibria - experimental methods and systems investigated (1978-1987)”, Fluid Phase Equilibria, vol.57, no.1-2, pp.1-33, 1990.
[51]S. Hirohama and T. Takatsuka, “Measurement and correlation of phase-equilibria for the carbon dioxide-ethanol-water system”, Journal of Chemical Engineering of Japan, vol.26, no.4, pp.408-415, 1993.
[52]S. Lucas, E. Alonso, J. A. Sanz and M. J. Cocero , “Safety Study in a Supercritical Extraction Plant” , Chem. Eng. Journal, vol.26, no.4, pp.449-461, 2003.
[53]T. Adrian, H. Hasse, G. Maurer, “Multiphase High-Pressure Equilibria of Carbon Dioxide-Water-Propionic Acid and Carbon Dioxide-Water-Isopropanol”, The Journal of Supercritical Fluids, vol.9, no.1, pp.19-25, 1996.
[54]T. Adrian, J. Freitag, G. Maurer, “Partitioning of Ethyl Acetate, Maltol, Glucose, and Fructose to Liquid Phases of the Carbon Dioxide + Water + 1-Propanol System”, Industrial and Engineering Chemistry Research, vol.40, no.22, pp.4990-4997, 2001.
[55]T. Adrian, M. Wendland, H. Hasse, G. Maurer, “High-Pressure Multiphase behavior of ternary systems carbon dioxide-Water-polar Solvent: review and modeling with the Peng-Robinson equation of State”, The Journal of Supercritical Fluids, vol.12, no.3, pp.185-221, 1998.
[56]The program PE ( Phase Equilibria) has been developed by Professor Brunner’s research group at the Technical University of Hamburg-Harburg, starting in 1985.
[57]U. Salgin, “Extraction of jojoba oil using supercritical CO2+ethanol mixture in green and high-tech separation process”, The Journal of Supercritical Fluids , vol.39, no.3, pp.330-337, 2007.
[58]V. Lopez-Avila, J. Benedicto , “Supercritical Fluid Extraction of Kava Lactones from Piper methysticum (Kava) Herb”, J. HRC, vol.20, no.10, pp.555-559, 1997.
[59]V. Riha, G. Brunner, “Separation of fish oil ethyl esters with supercritical carbon dioxide”, The Journal of Supercritical Fluids, vol.17, no.1, pp.55-64, 2000.
[60]W. -L. Weng, J. -T. Chen and M. -J. Lee, “High Pressure Vapor-Liquid Equilibria for Mixtures Containing a Supercritical Fluid”, Ind. Eng. Chem. Res., vol.33, no.8, pp.1955-1961, 1994.
[61]W. M. Haessler, Fire:Fundamentals and Control, Marcel Dekker, Inc., New York, 1989.
[62]Y. Garrabos, B. Le Neindre, R. Wunenburger, C. Lecoutre-Chabot, and D. Beysens, “Universal Scaling Form of the Equation of State of a Critical Pure Fluid”, International Journal of Thermophysics, vol.23, no.4, pp.997-1011, 2002.
[63]Y. Li, Y. Wang, Y. M. Wang, P. J. Yao, “Heat Integration of the azeotropic Distillation System With ANN and GA”, Proceedings of the 4th World Congress on Intelligent Control and Automation, June 10-14, 2002, Shanghai, P.R. China.
[64]Y. Tsai, Master Theses, Chung-Yuan Univ., “Pervaporation separation of aqueous alcohol solution through novel polyimide membranes”, 2002.
[65]Z. G. Lei, J. C. Zhang, B. H. Chen, “Separation of aqueous isopropanol by reactive extractive distillation”, Journal of Chemical Technology and Biotechnology, vol.77, no.11, pp.1251-1254, 2002.
[66]Z. G. Lei, R. Q. Zhou, Z. G. Duan, H. Y. Wang, “Development of the process for 2-propanol production by PROII and Column Design Software”, Comput. Appl. Chem. (China), vol.16, no.4, pp.265-267, 1999.
[67]Z. Tang, R. Zhou and Z. Duan, “Separation of isopropanol from aqueous solution by salting-out extraction”, J. Chem. Technol. Biotechnol., vol.76, no.7, pp.757-763, 2001.
[68].Z. -Y. Zhang, J. -C. Yang, Y. -G. Li, “Prediction of phase equilibria for CO2-C2H5OH-H2O system using the SAFT equation of state”, Fluid Phase Equilibria, vol.169, no.1, pp.1-18, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [4]邱泓瑜,林河木,李明哲,“高壓汽液相平衡行為”,化工技術, vol.15, no.7, pp.108-121, 2007.
2. [4]邱泓瑜,林河木,李明哲,“高壓汽液相平衡行為”,化工技術, vol.15, no.7, pp.108-121, 2007.
3. [10]張瑞玉, “平面顯示器及半導體製程用之溶劑回收技術”,化工資訊與商情, no.24, pp.57-65, 2005.
4. [10]張瑞玉, “平面顯示器及半導體製程用之溶劑回收技術”,化工資訊與商情, no.24, pp.57-65, 2005.
5. [12]郭子禎, “超臨界流體技術發展現況與趨勢”,化工資訊與商情, no.5, pp.12-17, 2003.
6. [12]郭子禎, “超臨界流體技術發展現況與趨勢”,化工資訊與商情, no.5, pp.12-17, 2003.
7. [13]郭德文,張學明, “超臨界流體反應-易於分離純化之化工製程技術”,化工資訊與商情, no.5, pp.27-32, 2003.
8. [13]郭德文,張學明, “超臨界流體反應-易於分離純化之化工製程技術”,化工資訊與商情, no.5, pp.27-32, 2003.
9. [14]陳政群,吳石乙, “台灣超臨界流體技術應用與發展現況”,化工資訊與商情, no.30, pp.87-91, 2005.
10. [14]陳政群,吳石乙, “台灣超臨界流體技術應用與發展現況”,化工資訊與商情, no.30, pp.87-91, 2005.
11. [15]彭定宇,林河木,李明哲, “用於Peng-Robinson方程式之交互作用參數值及其應用”,化工技術, vol.13, no.9, pp.159-178, 2005.
12. [15]彭定宇,林河木,李明哲, “用於Peng-Robinson方程式之交互作用參數值及其應用”,化工技術, vol.13, no.9, pp.159-178, 2005.
13. [18]談駿嵩, “超臨界流體的應用”,科學發展月刊, no. 359, pp.12-17, 2002.
14. [18]談駿嵩, “超臨界流體的應用”,科學發展月刊, no. 359, pp.12-17, 2002.
15. [21]蘇至善,陳延平, “應用超臨界流體技術進行藥物微粒化之研發”,化工技術, vol.15, no.7, pp.168-178, 2007.